Atjaunināt sīkdatņu piekrišanu

Biofluid Mechanics Second Edition [Hardback]

(Univ Of Adelaide, Australia)
  • Formāts: Hardback, 264 pages
  • Izdošanas datums: 19-Feb-2016
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 981471397X
  • ISBN-13: 9789814713979
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 71,62 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 264 pages
  • Izdošanas datums: 19-Feb-2016
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 981471397X
  • ISBN-13: 9789814713979
Citas grāmatas par šo tēmu:
Biofluid mechanics is the study of a certain class of biological problems from the viewpoint of fluid mechanics. Though biofluid mechanics does not involve any new development of the general principles of fluid mechanics, it does involve some new applications of its methods. Complex movements of fluids in the biological system demand for an analysis achievable only with professional fluid mechanics skills, and this volume aims to equip readers with the knowledge needed.This second edition is an enlarged version of the book published in 1992. While retaining the general plan of the first edition, this new edition presents an engineering analysis of the cardiovascular system relevant to the treatment of cardiovascular diseases and combines engineering principles. Included in the analysis of this volume are: the emerging interdisciplinary field of tissue engineering, which deals with the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain and improve tissue function,; and cellular and molecular bioengineering, which involves the mechanical, electrical and chemical processes of the human cell and tries to explain how cellular behaviour arises from molecular-level interactions.The added material in this edition are specifically designed for biomedical engineering professionals and students, and looks at the important applications of biofluid mechanics from an engineering perspective.
Preface to the Second Edition xiii
Preface to the First Edition xv
Chapter 1 Introduction
1.1 A Basic Introduction
1(3)
1.1.1 Viscosity
2(1)
1.1.2 Laminar and Turbulent Flow
3(1)
1.1.3 Compressible and Incompressible Flow
3(1)
1.2 Basic Equations of Fluid Mechanics
4(6)
1.2.1 Continuity Equation
4(2)
1.2.2 Equations of Motion
6(4)
1.3 Simplification of Basic Equations
10(3)
1.4 Initial and Boundary Conditions
13(1)
1.5 Dimensional Analysis in Fluid Mechanics
14(3)
Chapter 2 Circulatory Biofluid Mechanics
2.1 General Introduction
17(1)
2.2 The Circulatory System
18(7)
2.2.1 Introduction
18(1)
2.2.2 Systemic and Pulmonary Circulations
18(3)
2.2.3 The Circulation in the Heart
21(4)
2.3 Diseases Related to Circulation
25(4)
Chapter 3 Blood Rheology: Properties of Flowing Blood
3.1 General Introduction
29(1)
3.2 Blood Composition
30(1)
3.3 Structure of Blood
31(2)
3.4 Flow Properties of Blood
33(3)
3.4.1 Viscosity of Blood
33(1)
3.4.2 Yield Stress of Blood
34(2)
3.5 Blood Vessel Structure
36(1)
3.5.1 Arteries and Arterioles
37(1)
3.5.2 Veins and Venules
37(1)
3.5.3 Capillaries
37(1)
3.6 Diseases Related to Obstruction of Blood Flow
37(4)
3.6.1 Thrombus Formation
38(1)
3.6.2 Embolus
38(1)
3.6.3 Compression
39(1)
3.6.4 Structural Changes
39(1)
3.6.5 Vasospasms
39(2)
Chapter 4 Models of Biofluid Flows
4.1 Flows in Pipes and Ducts
41(3)
4.1.1 Introduction
41(1)
4.1.2 Developing and Fully Developed Flow
42(2)
4.2 Models of Blood Flows
44(4)
4.2.1 Introduction
44(1)
4.2.2 Poiseuille's Flow
45(3)
4.3 Consequence of Poiseuille's Flow
48(1)
4.4 Applications of Poiseuille's Law for the Study of Blood Flow
48(4)
4.5 Pulsatile Flow
52(4)
4.6 Further Discussion on Pulsatile Flow
56(3)
4.7 The Pulse Wave
59(2)
4.8 Mones-Korteweg Expression for Wave Velocity in an Inviscid Fluid-Filled Elastic Cylindrical Tube
61(2)
4.9 Applications in the Cardiovascular System
63(2)
4.10 Wave Propagation Accounting for Viscosity and its Application to Cardiac Output Determination
65(4)
4.11 Flow Through a Converging-Diverging Duct
69(8)
Chapter 5 Non-Newtonian Fluids
5.1 General Introduction
77(1)
5.2 Classification of Non-Newtonian Fluids
78(1)
5.3 Time Independent Fluids
78(3)
5.3.1 Power-Law Fluids
79(1)
5.3.2 Bingham Fluids
80(1)
5.3.3 Other Special Non-Newtonian Fluids
80(1)
5.4 Time Dependent Fluids
81(1)
5.5 Viscoelastic Fluids
81(1)
5.6 Laminar Flow of Non-Newtonian Fluids
81(11)
5.6.1 Power-Law Model
82(3)
5.6.2 Herschel-Bulkley Model
85(3)
5.6.3 Casson Model
88(3)
5.6.4 Further Analysis of the Casson Model
91(1)
5.7 Flow of Non-Newtonian Fluids in Elastic Tubes
92(11)
5.7.1 Power-Law Model Using Linear Elastic Theory
94(6)
5.7.2 Casson Model Using Linear Elastic Theory
100(3)
Chapter 6 Models for Other Flows
6.1 Introduction
103(1)
6.2 The Krogh Model of Oxygen Diffusion from Blood Vessel to Tissue
104(7)
6.2.1 Capillary Blood Vessel Region
106(1)
6.2.2 Tissue Region
107(1)
6.2.3 Boundary Conditions
107(1)
6.2.4 Krogh's Steady-State Model
107(2)
6.2.5 Blum's Steady-State Model
109(2)
6.3 Fluid Flow in Kidneys
111(6)
6.3.1 Introduction
111(1)
6.3.2 Diffusion Process in the Haemodialyser
111(3)
6.3.3 Flow in the Renal Tubule
114(3)
6.4 Flow Measurement by Indicator Dilution Method
117(3)
6.4.1 Introduction
117(1)
6.4.2 Measurement of Flow
117(3)
6.5 Peristaltic Flows
120(7)
6.5.1 Introduction
120(1)
6.5.2 Peristaltic Motion in a Cylindrical Tube
120(3)
6.5.3 Long-Wavelength Analysis
123(4)
Chapter 7 Fluid Mechanics of Heart Valves
7.1 General Introduction
127(2)
7.2 A Brief Description of the Heart Valves
129(3)
7.3 Prosthetic Heart Valves
132(7)
7.3.1 History of Valve Replacement
132(3)
7.3.2 Thrombosis and Thromboembolism
135(2)
7.3.3 Haemolysis
137(1)
7.3.4 Endothelial Damage
138(1)
7.3.5 Tissue Overgrowth
138(1)
Chapter 8 Computational Biofluid Mechanics
8.1 Introduction
139(2)
8.2 Mathematical Modelling
141(2)
8.3 Laminar Versus Turbulent Flow Models
143(1)
8.4 Turbulence Models
144(2)
8.5 Computational Methods for the Study of Flow Through Prosthetic Heart Valves
146(3)
8.6 Laminar Flow Model Through a Prosthesis
149(11)
8.6.1 Problem Formulation
149(4)
8.6.2 Finite Difference Formulation
153(2)
8.6.3 Numerical Solution
155(5)
8.7 Turbulent Flow Model Through a Ball Prosthesis
160(16)
8.7.1 Introduction
160(1)
8.7.2 Model Formulation
160(7)
8.7.3 Coordinate System Generation
167(3)
8.7.4 Finite Difference Formulation
170(1)
8.7.5 Numerical Solution
171(3)
8.7.6 Remark
174(2)
8.8 Computational Fluid Dynamics Applications to Cardiovascular Health Assessment
176(17)
8.8.1 Introduction
176(3)
8.8.2 Computing Framework for the Assessment of Haemodynamics
179(1)
8.8.3 Medical Imaging and Anatomical Reconstruction...
180(3)
8.8.4 Reconstructing Surface Mesh and Boundary Conditions
183(4)
8.8.5 Haemodynamics Performance Indicators
187(3)
8.8.6 Concluding Remarks
190(3)
Chapter 9 Tissue Engineering
9.1 Introduction
193(1)
9.2 Cartilage Tissue Engineering
194(4)
9.2.1 Introduction
194(2)
9.2.2 Collagen
196(1)
9.2.3 Proteoglycan
197(1)
9.2.4 Chondrocyte
197(1)
9.3 Mathematical Model of the ECM in Tissue Engineering Study
198(6)
9.3.1 Chemical Potential
201(1)
9.3.2 Entropic Contributions to Chemical Potentials (μSj)
201(1)
9.3.3 Internal Energy Contributions to Chemical Potentials (μIj)
202(1)
9.3.4 Interface Conditions
203(1)
9.3.5 Ionised-species Chemistry
204(1)
9.4 Experimental Methods
204(3)
9.4.1 Comparison of Model Outcomes with Experiments: Parameter Estimation
206(1)
9.5 Effect of Structural and Environmental Fluctuations on Equilibrium ECM Configuration
207(6)
9.5.1 Effects of Changes in Ionisation, Cross-links
207(2)
9.5.2 Effects of Changes in the Bath Salt Concentration...
209(1)
9.5.3 Effects of Changes in the Bath pH
209(2)
9.5.4 Concluding Remarks
211(2)
Chapter 10 Cellular Engineering
10.1 Introduction
213(2)
10.2 System Dynamical Model Building for the Epigenetic Mechanism
215(5)
10.3 Ontogenesis
220(11)
10.3.1 Steady State and Linearisation
222(2)
10.3.2 Pattern in Cylindrical Shaped Model Embryo
224(7)
10.4 Concluding Remarks on Tissue Engineering (TE) and Cellular Engineering (CE)
231(2)
Glossary 233(4)
Bibliography 237(8)
Index 245