Atjaunināt sīkdatņu piekrišanu

E-grāmata: Bioinformatics Research and Applications: 16th International Symposium, ISBRA 2020, Moscow, Russia, December 1-4, 2020, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Bioinformatics 12304
  • Izdošanas datums: 17-Aug-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030578213
  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Bioinformatics 12304
  • Izdošanas datums: 17-Aug-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030578213

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the proceedings of the 16th International Symposium on Bioinformatics Research and Applications, ISBRA 2020, held in Moscow, Russia, in December 2020.
The 23 full papers and 18 short papers presented in this book were carefully reviewed and selected from 131 submissions. They were organized in topical sections named: genome analysis; systems biology; computational proteomics; machine and deep learning; and data analysis and methodology.

Mitochondrial Haplogroup Assignment for High-Throughput Sequencing Data
from Single Individual and Mixed DNA Samples.- Signet Ring Cell Detection
with Classi cation Reinforcement Detection Network.- SPOC: Identification of
Drug Targets in Biological Networks via Set Preference Output Control.-
Identification of a novel compound heterozygous variant in NBAS causing bone
fragility by the type of osteogenesis imperfecta.- Isoform-disease
association prediction by data fusion.- EpIntMC: Detecting Epistatic
Interactions using Multiple Clusterings.- Improving Metagenomic Classi cation
using discriminative k-mers from sequencing data.- Dilated-DenseNet For
Macromolecule Classifi cation In Cryo-electron Tomography.- Ess-NEXG: Predict
Essential Proteins by Constructing a Weighted.- Protein Interaction Network
based on Node Embedding and XGBoost.- mapAlign: an efficient approach for
mapping and aligning long reads to reference genomes.- Functional
Evolutionary Modeling Exposes Overlooked Protein-Coding Genes Involved in
Cancer.- Testing the Agreement of Trees with Internal Labels.- SVLR: Genome
Structure Variant Detection Using Long Read Sequencing Data.- De novo
prediction of drug-target interaction via Laplacian regularized Schatten-p
norm minimization.- Diagnosis of ASD from rs-fMRIs based on brain dynamic
networks.- miRNA-Disease Associations Prediction Based on Negative Sample
Selection and Multi-layer Perceptron.- Checking Phylogenetic Decisiveness in
Theory and in Practice.- TNet: Phylogeny-Based Inference of Disease
Transmission Networks Using Within-Host Strain Diversity.- Cancer breakpoint
hotspots versus individual breakpoints prediction by machine learning
models.- Integer Linear Programming Formulation for the Uni ed
DuplicationLoss-Coalescence Model.- In silico-guided discovery of potential
HIV-1 entry inhibitors mimicking bNAb N6: virtual screening, docking,
molecular dynamics, and post-molecular modeling analysis.- Learning
Structural Genetic Information via Graph Neural Embedding.- A New
Network-based Tool to Analyse Competing Endogenous RNAs.- Deep Ensemble
models for 16S Ribosomal Gene Classification.- Search for tandem repeats in
the rst chromosome from the rice genome.- Deep Learning approach with
rotate-shift invariant input to predict protein homodimer structure.-
Development of a Neural Network-Based Approach for Prediction of Potential
HIV-1 Entry Inhibitors Using Deep Learning and Molecular Modeling Methods.-
In Silico Design and Evaluation of Novel Triazole-Based Compounds as
Promising Drug Candidates Against Breast Cancer.- Identification of essential
genes with NemoPro le and various machine learning models.- NemoLib: Network
Motif Libraries for network motif detection and analysis.- Estimating enzyme
participation in metabolic pathways for microbial communities from RNA-seq
data.- Identication of Virus-Receptor Interactions based on Network
Enhancement and Similarity.- Enhanced functional pathway annotations for
differentiallyexpressed gene clusters.- Automated Detection of Sleep Apnea
from Abdominal Respiratory Signal using Hilbert-Huang Transform.- Na/K-ATPase
glutathionylation: in silico modeling of reaction mechanisms.- HiChew: a tool
for TAD clustering in embryogenesis.- Generation of Hi-C maps from DNA
sequence data using Deep Learning.- SC1: A Tool for Interactive Web-Based
Single Cell RNA-Seq Data Analysis.- Quantitative analysis of the dynamics of
maternal gradients in the early Drosophila embryo.- Atom Tracking Using
Cayley Graphs.- SPOC: Identification of Drug Targets in Biological Networks
via Set Preference Output Control.- Identification of a novel compound
heterozygous variant in NBAS causing bone fragility by the type of
osteogenesis imperfecta.