Atjaunināt sīkdatņu piekrišanu

E-grāmata: Bioinformatics Research and Applications: 20th International Symposium, ISBRA 2024, Kunming, China, July 19-21, 2024, Proceedings, Part I

Edited by , Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 107,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 20th International Symposium on Bioinformatics Research and Applications, ISBRA 2024, held in Kunming, China, in July 1921, 2024.





The 93 full papers  included in this book were carefully reviewed and selected from 236 submissions. The symposium provides a forum for the exchange of ideas and results among researchers, developers, and practitioners working on all aspects of bioinformatics and computational biology and their applications.
.- Predicting Drug-Target Affinity Using Protein Pocket and Graph
Convolution Network.



.- MSMK: Multiscale module kernel for identifying disease-related genes.



.- Flat and Nested Protein Name Recognition Based on BioBERT and Biaffine
Decoder.



.- RFIR: A Lightweight Network for Retinal Fundus Image Restoration.



.- Gaussian Beltrami-Klein Model for Protein Sequence Classification: A
Hyperbolic Approach.



.- stEnTrans: Transformer-based deep learning for spatial transcriptomics
enhancement.



.- Contrastive Masked Graph Autoencoders for Spatial Transcriptomics Data
Analysis.



.- Spatial gene expression prediction from histology images with STco.



.- Exploration and Visualization Methods for Chromatin Interaction Data.



.- A Geometric Algorithm for Blood Vessel Reconstruction from Skeletal
Representation.



.- UFGOT: unbalanced filter graph alignment with optimal transport for cancer
subtyping based on multi-omics data.



.- Dendritic SE-ResNet Learning for Bioinformatic Classification.



.- GSDRP: Fusing Drug Sequence Features with Graph Features to Predict Drug
Response.



.- CircMAN: Multi-channel Attention Networks Based on Feature Fusion for
CircRNA-binding Site Prediction.



.- Machine Learning-Driven Discovery of Quadruple-Negative Breast Cancer
Subtypes from Gene Expression Data.



.- A novel Combined Embedding Model based on Heterogeneous Network for
Inferring Microbe-Metabolite Interactions.



.- Central Feature Network Enables Accurate Detection of Both Small and Large
Particles in Cryo-Electron Tomography.



.- LncRNA-disease association prediction based on integrated application of
matrix decomposition and graph contrastive learning.



.- Predictive Score-Guided Mixup for Medical Text Classification.



.- CHASOS: A novel deep learning approach for chromatin loop predictions.



.- A deep metric learning based method for predicting miRNA-disease
associations.



.- Learning an adaptive self-expressive fusion model for multi-omics cancer
subtype prediction.



.- IFNet: An Image-Enhanced Cross-Modal Fusion  Network for Radiology Report
Generation.



.- Hybrid Attention Knowledge Fusion Network for Automated Medical Code
Assignment.



.- Variable-length Promoter Strength Prediction based on Graph Convolution.



.- scMOGAE: A Graph Convolutional Autoencoder-Based Multi-omics Data
Integration Framework for Single-Cell Clustering.



.- VM-UNET-V2: Rethinking Vision Mamba UNet for Medical Image Segmentation.



.- Fighting Fire with Fire: Medical AI Models Defend Against Backdoor Attacks
via Self-Learning.



.- An In-depth Assessment of Sequence Clustering softares in Bioinformatics.



.- Novel Fine-tuning Strategy on Pre-trained Protein Model Enhances ACP
functional Type Classfication.



.- Enhancing Privacy and Preserving Accuracy in Medical Image Classification
with Limited Labeled Samples.



.- gaBERT: an Interpretable Pretrained Deep Learning  Framework for Cancer
Gene Marker Discovery.



.- Hybrid CNN and Low-Complexity Transformer Network with Attention-based
Feature Fusion for Predicting Lung Cancer Tumor after Neoadjuvant
Chemoimmunotherapy.



.- Deep Hyper-Laplacian Regularized Self-Representation Learning based
Structured Association Analysis for Brain Imaging Genetics.



.- IntroGRN: Gene Regulatory Network Inference from single-cell RNA Data
Based on Introspective VAE.



.- Identification of Potential SARS-CoV-2 Main Protease Inhibitors Using Drug
Repurposing and Molecular Modeling.



.- An Ensemble Learning Model for Predicting Unseen TCR-Epitope
Interactions.



.- Deep Learning Approach to Identify Proteins Secondary Structure
Elements.



.- Modeling single-cell ATAC- seq data based on contrastive learning.



.- Continuous Identification of Sepsis-Associated Acute Heart Failure
Patients: An Integrated LSTM-Based Algorithm.



.- A novel approach for subtype identification via multi-omics data using
adversarial autoencoder.