|
Part I Introductory Matter |
|
|
|
1 BioInformation Processing |
|
|
3 | (16) |
|
1.1 The Proper Level of Abstraction |
|
|
4 | (1) |
|
1.2 The Threads of Our Tapestry |
|
|
5 | (2) |
|
|
7 | (4) |
|
1.4 Theoretical Modeling Issues |
|
|
11 | (3) |
|
|
14 | (5) |
|
|
15 | (4) |
|
|
|
|
19 | (20) |
|
2.1 The Microscopic Space-Time Evolution of a Particle |
|
|
19 | (3) |
|
2.2 The Random Walk and the Binomial Distribution |
|
|
22 | (2) |
|
2.3 Rightward Movement Has Probability 0.5 or Less |
|
|
24 | (4) |
|
2.3.1 Finding the Average of the Particles Distribution in Space and Time |
|
|
25 | (1) |
|
2.3.2 Finding the Standard Deviation of the Particles Distribution in Space and Time |
|
|
26 | (2) |
|
2.3.3 Specializing to an Equal Probability Left and Right Random Walk |
|
|
28 | (1) |
|
|
28 | (2) |
|
2.5 Obtaining the Probability Density Function |
|
|
30 | (3) |
|
|
31 | (1) |
|
|
32 | (1) |
|
2.6 Understanding the Probability Distribution of the Particle |
|
|
33 | (1) |
|
2.7 The General Diffusion Equation |
|
|
34 | (5) |
|
|
37 | (2) |
|
|
39 | (6) |
|
3.1 The Laplace Transform |
|
|
39 | (2) |
|
|
40 | (1) |
|
3.2 The Fourier Transform |
|
|
41 | (4) |
|
|
44 | (1) |
|
4 The Time Dependent Cable Solution |
|
|
45 | (16) |
|
4.1 The Solution for a Current Impulse |
|
|
46 | (9) |
|
4.1.1 Modeling the Current Pulses |
|
|
46 | (1) |
|
4.1.2 Scaling the Cable Equation |
|
|
47 | (2) |
|
4.1.3 Applying the Laplace Transform in Time |
|
|
49 | (1) |
|
4.1.4 Applying the Fourier Transform in Space |
|
|
50 | (1) |
|
4.1.5 The J Transform of the Pulse |
|
|
50 | (1) |
|
4.1.6 The Idealized Impulse 3T Transform Solution |
|
|
51 | (1) |
|
4.1.7 Inverting the ST Transform Solution |
|
|
51 | (2) |
|
4.1.8 A Few Computed Results |
|
|
53 | (1) |
|
4.1.9 Reinterpretation in Terms of Charge |
|
|
54 | (1) |
|
4.2 The Solution to a Constant Current |
|
|
55 | (2) |
|
4.3 Time Dependent Solutions |
|
|
57 | (4) |
|
|
58 | (3) |
|
|
|
5 Mammalian Neural Structure |
|
|
61 | (22) |
|
|
61 | (8) |
|
|
69 | (1) |
|
|
69 | (5) |
|
|
74 | (9) |
|
5.4.1 Cortical Processing |
|
|
76 | (1) |
|
|
77 | (4) |
|
|
81 | (2) |
|
6 Abstracting Principles of Computation |
|
|
83 | (24) |
|
|
83 | (3) |
|
6.2 Dynamical Loop Details |
|
|
86 | (4) |
|
6.3 An Implication for Biological Computation |
|
|
90 | (1) |
|
6.4 Transport Mechanisms and Switches |
|
|
91 | (3) |
|
6.5 Control of a Substance via Creation/Destruction Patterns |
|
|
94 | (2) |
|
6.6 Calcium Ion Signaling |
|
|
96 | (5) |
|
|
101 | (6) |
|
6.7.1 Ligand---Receptor Response Strategies |
|
|
102 | (3) |
|
|
105 | (2) |
|
7 Second Messenger Diffusion Pathways |
|
|
107 | (10) |
|
7.1 Calcium Diffusion in the Cytosol |
|
|
107 | (7) |
|
7.1.1 Assumption One: Calcium Binding Is Fast |
|
|
110 | (2) |
|
7.1.2 Assumption Two: Binding Rate Is Much Less Than Disassociation Rate |
|
|
112 | (2) |
|
7.2 Transcriptional Control of Free Calcium |
|
|
114 | (3) |
|
|
116 | (1) |
|
8 Second Messenger Models |
|
|
117 | (20) |
|
8.1 Generic Second Messenger Triggers |
|
|
117 | (5) |
|
8.1.1 Concatenated Sigmoid Transitions |
|
|
121 | (1) |
|
8.2 A Graphic Model Computation Model |
|
|
122 | (3) |
|
|
125 | (1) |
|
8.4 Spatially Dependent Calcium Triggers |
|
|
126 | (2) |
|
8.5 Calcium Second Messenger Pathways |
|
|
128 | (2) |
|
8.6 General Pharmacological Inputs |
|
|
130 | (3) |
|
8.6.1 7 Transmembrane Regions |
|
|
131 | (1) |
|
8.6.2 4 Transmembrane Regions |
|
|
132 | (1) |
|
8.6.3 Family Two: The Agonist Spectrum |
|
|
132 | (1) |
|
8.6.4 Allosteric Modulation of Output |
|
|
133 | (1) |
|
8.7 Neurotransmitter Effects |
|
|
133 | (4) |
|
|
136 | (1) |
|
9 The Abstract Neuron Model |
|
|
137 | (38) |
|
|
137 | (2) |
|
|
139 | (2) |
|
9.3 Abstract Neuron Design |
|
|
141 | (10) |
|
|
143 | (8) |
|
9.4 Feature Vector Abstraction |
|
|
151 | (18) |
|
9.4.1 The BFV Functional Form |
|
|
152 | (3) |
|
9.4.2 Modulation of the BFV Parameters |
|
|
155 | (1) |
|
9.4.3 Modulation via the BFV Ball and Stick Model |
|
|
156 | (13) |
|
9.5 The Full Abstract Neuron Model |
|
|
169 | (6) |
|
|
171 | (4) |
|
Part IV Models of Emotion and Cognition |
|
|
|
|
175 | (8) |
|
10.1 The Sloman Emotional Model |
|
|
179 | (1) |
|
10.2 PsychoPhysiological Data |
|
|
180 | (3) |
|
|
182 | (1) |
|
11 Generation of Music Data: J. Peterson and L. Dzuris |
|
|
183 | (22) |
|
|
183 | (3) |
|
11.2 The Wurfelspiel Approach |
|
|
186 | (1) |
|
11.3 Neutral Music Data Design |
|
|
187 | (4) |
|
11.3.1 Neutral Musical Alphabet Design |
|
|
187 | (2) |
|
11.3.2 The Generated Musical Phrases |
|
|
189 | (2) |
|
11.4 Emotional Musical Data Design |
|
|
191 | (14) |
|
|
191 | (4) |
|
11.4.2 Emotional Music Data Design |
|
|
195 | (1) |
|
11.4.3 Happy Musical Data |
|
|
196 | (1) |
|
|
197 | (2) |
|
11.4.5 Angry Musical Data |
|
|
199 | (2) |
|
11.4.6 Emotional Musical Alphabet Selection |
|
|
201 | (2) |
|
|
203 | (2) |
|
12 Generation of Painting Data: J. Peterson, L. Dzuris and Q. Peterson |
|
|
205 | (22) |
|
12.1 Developing a Painting Model |
|
|
205 | (5) |
|
12.2 Neutral Painting Data |
|
|
210 | (2) |
|
12.2.1 The Neutral Kunsterisches Wurfelspiel Approach |
|
|
211 | (1) |
|
12.3 Encoding the Painting Data |
|
|
212 | (4) |
|
12.4 Emotionally Labeled Painting Data |
|
|
216 | (11) |
|
12.4.1 Painting and Emotion in the Literature |
|
|
216 | (4) |
|
12.4.2 The Emotional Kunsterisches Wurfelspiel Approach |
|
|
220 | (5) |
|
|
225 | (2) |
|
13 Modeling Compositional Design |
|
|
227 | (24) |
|
13.1 The Cognitive Dysfunction Model Review |
|
|
228 | (3) |
|
13.2 Connectionist Based Compositional Design |
|
|
231 | (6) |
|
|
231 | (3) |
|
13.2.2 Noun to Verb Processing |
|
|
234 | (2) |
|
13.2.3 Sentence Construction |
|
|
236 | (1) |
|
13.3 Neurobiologically Based Compositional Design |
|
|
237 | (5) |
|
13.3.1 Recalling Data Generation |
|
|
237 | (2) |
|
13.3.2 Training the Isocortex Model |
|
|
239 | (2) |
|
13.3.3 Sensor Fusion in Area 37 |
|
|
241 | (1) |
|
13.4 Integration of the Models |
|
|
242 | (2) |
|
|
244 | (1) |
|
13.6 Integration into a Virtual World |
|
|
245 | (2) |
|
|
247 | (1) |
|
13.8 The Complete Cognitive Model |
|
|
248 | (1) |
|
13.9 Virtual World Constructions |
|
|
249 | (2) |
|
|
250 | (1) |
|
14 Networks of Excitable Neurons |
|
|
251 | (26) |
|
14.1 The Basic Neurotransmitters |
|
|
251 | (3) |
|
|
254 | (2) |
|
14.3 Software Implementation Thoughts |
|
|
256 | (3) |
|
14.4 How Would We Code Synapse Interaction? |
|
|
259 | (5) |
|
14.4.1 The Catecholamine Abstraction |
|
|
260 | (3) |
|
|
263 | (1) |
|
14.5 Networks of Neural Objects |
|
|
264 | (8) |
|
14.5.1 Chained Architecture Details |
|
|
264 | (6) |
|
14.5.2 Modeling Neurotransmitter Interactions |
|
|
270 | (2) |
|
|
272 | (5) |
|
|
276 | (1) |
|
|
277 | (10) |
|
|
277 | (4) |
|
15.1.1 Some MatLab Comments |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
281 | (6) |
|
|
284 | (3) |
|
Part V Simple Abstract Neurons |
|
|
|
16 Matrix Feed Forward Networks |
|
|
287 | (28) |
|
|
287 | (3) |
|
16.2 Minimizing the MFFN Energy |
|
|
290 | (1) |
|
16.3 Partial Calculations for the MFFN |
|
|
291 | (4) |
|
16.3.1 The Last Hidden Layer |
|
|
291 | (1) |
|
16.3.2 The Remaining Hidden Layers |
|
|
292 | (3) |
|
16.4 The Full Backpropagation Equations for the MFFN |
|
|
295 | (1) |
|
16.5 A Three Layer Example |
|
|
296 | (2) |
|
|
296 | (1) |
|
|
297 | (1) |
|
|
297 | (1) |
|
|
298 | (3) |
|
16.7 MatLab Implementations |
|
|
301 | (8) |
|
|
301 | (1) |
|
|
302 | (1) |
|
|
303 | (5) |
|
|
308 | (1) |
|
16.8 Sample Training Sessions |
|
|
309 | (6) |
|
16.8.1 Approximating a Step Function |
|
|
309 | (2) |
|
16.8.2 Approximating sin2 |
|
|
311 | (1) |
|
16.8.3 Approximating sin2 Again: Linear Outputs |
|
|
312 | (2) |
|
|
314 | (1) |
|
17 Chained Feed Forward Architectures |
|
|
315 | (18) |
|
|
315 | (4) |
|
17.2 Minimizing the CFFN Energy |
|
|
319 | (1) |
|
17.3 Partial Derivative Calculation in Generalized Chains |
|
|
319 | (5) |
|
17.4 Partial Calculations for the CFFN |
|
|
324 | (4) |
|
17.4.1 The ∂yj-∂yi Calculation |
|
|
326 | (1) |
|
17.4.2 The Internal Parameter Partial Calculations |
|
|
326 | (2) |
|
17.5 Simple MatLab Implementations |
|
|
328 | (5) |
|
|
330 | (3) |
|
Part VI Graph Based Modeling In Matlab |
|
|
|
|
333 | (84) |
|
18.1 Building Global Graph Objects One |
|
|
337 | (8) |
|
|
340 | (2) |
|
|
342 | (2) |
|
18.1.3 A First Graph Class |
|
|
344 | (1) |
|
18.2 Adding Class Methods First Pass |
|
|
345 | (15) |
|
18.2.1 Adding Edge Methods |
|
|
345 | (1) |
|
18.2.2 Adding Vertices Methods |
|
|
346 | (1) |
|
18.2.3 Adding Graph Methods |
|
|
346 | (2) |
|
|
348 | (3) |
|
18.2.5 Adding a Graph to an Existing Graph |
|
|
351 | (2) |
|
|
353 | (3) |
|
18.2.7 Evaluation and Update Strategies |
|
|
356 | (4) |
|
|
360 | (11) |
|
18.4 Polishing the Training Code |
|
|
371 | (8) |
|
18.5 Comparing the CFFN and MFFN Code |
|
|
379 | (2) |
|
|
381 | (9) |
|
|
390 | (11) |
|
18.8 Better Lagged Training! |
|
|
401 | (5) |
|
18.9 Improved Gradient Descent |
|
|
406 | (11) |
|
|
414 | (3) |
|
|
417 | (44) |
|
|
420 | (10) |
|
|
421 | (2) |
|
|
423 | (2) |
|
|
425 | (5) |
|
|
430 | (11) |
|
19.2.1 Add Location Methods |
|
|
430 | (1) |
|
|
431 | (1) |
|
|
431 | (1) |
|
19.2.4 Finding the Incidence Matrix |
|
|
432 | (9) |
|
|
441 | (1) |
|
19.3 Evaluation and Update Strategies in Graphs |
|
|
441 | (8) |
|
|
449 | (12) |
|
|
461 | (34) |
|
20.1 Build A Cortex Module |
|
|
461 | (10) |
|
20.1.1 Build A Cortical Can |
|
|
462 | (2) |
|
20.1.2 Build A Cortical Column |
|
|
464 | (3) |
|
20.1.3 Build A Cortex Sheet |
|
|
467 | (4) |
|
20.2 Build A Thalamus Module |
|
|
471 | (3) |
|
20.3 Build A MidBrain Module |
|
|
474 | (3) |
|
20.4 Building the Brain Model |
|
|
477 | (18) |
|
|
491 | (4) |
|
Part VII Models of Cognition Dysfunction |
|
|
|
21 Models of Cognitive Dysfunction |
|
|
495 | (24) |
|
|
495 | (4) |
|
21.1.1 Training Algorithms |
|
|
499 | (1) |
|
|
499 | (9) |
|
|
499 | (2) |
|
|
501 | (3) |
|
21.2.3 Submodule Two Training |
|
|
504 | (3) |
|
21.2.4 Submodule One Training |
|
|
507 | (1) |
|
21.3 A Normal Brain Model |
|
|
508 | (11) |
|
21.3.1 The Cognitive Dysfunction Model |
|
|
513 | (2) |
|
|
515 | (4) |
|
|
|
|
519 | (6) |
|
|
521 | (4) |
|
Part IX Background Reading |
|
|
|
|
525 | (14) |
|
23.1 The Central Nervous System |
|
|
525 | (1) |
|
23.2 Information Theory, Biological Complexity and Neural Circuits |
|
|
526 | (1) |
|
23.3 Nervous System Evolution and Cognition |
|
|
526 | (1) |
|
23.4 Comparative Cognition |
|
|
527 | (3) |
|
|
530 | (1) |
|
23.6 Gene Regulatory Circuits |
|
|
530 | (1) |
|
|
531 | (2) |
|
23.8 Theoretical Robotics |
|
|
533 | (6) |
|
|
533 | (6) |
Glossary |
|
539 | (16) |
Index |
|
555 | |