Atjaunināt sīkdatņu piekrišanu

E-grāmata: Biological Data Mining And Its Applications In Healthcare

Edited by (New Jersey Inst Of Technology, Usa), Edited by (A*star, S'pore), Edited by (A*star, Singapore)
  • Formāts - EPUB+DRM
  • Cena: 51,84 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This work is for cross-disciplinary researchers and practitioners from the data mining disciplines, the life sciences, and healthcare domains. It describes the latest research results and best practices in analyzing and converting biological, biomedical, and clinical data into useful knowledge through biological data mining. The data mining techniques described are designed to tackle data analysis challenges such as noisy and incomplete data and integration of various data sources. Chapters are in sections on sequence analysis, biological network mining, classification and trend analysis and 3D medical images, and biomedical applications of text mining. Each chapter begins with an introduction to a specific class of data mining techniques, written in a tutorial style accessible to non-computational readers such as biologists and healthcare researchers. This is followed by a detailed case study on how to use data mining techniques in a real-world biological or clinical application. Some specific topics include mining genomic sequence data, automated mining of disease-specific protein interaction networks based on biomedical literature, and indexing for similarity queries on biological networks. The book includes b&w images. Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)

Biologists are stepping up their efforts in understanding the biological processes that underlie disease pathways in the clinical contexts. This has resulted in a flood of biological and clinical data from genomic and protein sequences, DNA microarrays, protein interactions, biomedical images, to disease pathways and electronic health records. To exploit these data for discovering new knowledge that can be translated into clinical applications, there are fundamental data analysis difficulties that have to be overcome. Practical issues such as handling noisy and incomplete data, processing compute-intensive tasks, and integrating various data sources, are new challenges faced by biologists in the post-genome era. This book will cover the fundamentals of state-of-the-art data mining techniques which have been designed to handle such challenging data analysis problems, and demonstrate with real applications how biologists and clinical scientists can employ data mining to enable them to make meaningful observations and discoveries from a wide array of heterogeneous data from molecular biology to pharmaceutical and clinical domains.
Preface v
Part I Sequence Analysis
Mining the Sequence Databases for Homology Detection: Application to Recognition of Functions of Trypanosoma brucei brucei Proteins and Drug Targets
3(30)
G. Ramakrishnan
V.S. Gowri
R. Mudgal
N.R. Chandra
N. Srinivasan
Identification of Genes and their Regulatory Regions Based on Multiple Physical and Structural Properties of a DNA Sequence
33(34)
Xi Yang
Nancy Yu Song
Hong Yon
Mining Genomic Sequence Data for Related Sequences Using Pairwise Statistical Significance
67(38)
Yuhong Zhang
Yunbo Rao
Part II Biological Network Mining
Indexing for Similarity Queries on Biological Networks
105(18)
Gunhan Gulsoy
Md Mahmudul Hasan
Yusuf Kavurucu
Tamer Kahveci
Theory and Method of Completion for a Boolean Regulatory Network Using Observed Data
123(24)
Takeyuki Tamura
Tatsuya Akutsu
Mining Frequent Subgraph Patterns for Classifying Biological Data
147(22)
Saeed Salem
On the Integration of Prior Knowledge in the Inference of Regulatory Networks
169(34)
Catharina Olsen
Benjamin Haibe-Kains
John Quackenbush
Gianluca Bontempi
Part III Classification, Trend Analysis and 3D Medical Images
Classification and its Application to Drug-Target Prediction
203(34)
Jian-Ping Mei
Chee-Keong Kwoh
Peng Yang
Xiao-Li Li
Characterization and Prediction of Human Protein-Protein Interactions
237(26)
Yi Xiong
Dan Syzmanski
Daisuke Kihara
Trend Analysis
263(42)
Wen-Chuan Xie
Miao He
Jake Yue Chen
Data Acquisition and Preprocessing on Three Dimensional Medical Images
305(20)
Yuhua Jiao
Liang Chen
Jin Chen
Part IV Text Mining and its Biomedical Applications
Text Mining in Biomedicine and Healthcare
325(48)
Hong-Jie Dai
Chi-Yang Wu
Richard Tzong-Han Tsai
Wen-Lian Hsu
Learning to Rank Biomedical Documents with only Positive and Unlabeled Examples: A Case Study
373(20)
Mingzhu Zhu
Yi-Fang Brook Wu
Meghana Samir Vasavada
Jason T. L. Wang
Automated Mining of Disease-Specific Protein Interaction Networks Based on Biomedical Literature
393(24)
Rajesh Chowdhary
Boris R. Jankovic
Rachel V. Stankowski
John A.C. Archer
Xiangliang Zhang
Xin Gao
Vladimir B. Bajic
Index 417