Atjaunināt sīkdatņu piekrišanu

E-grāmata: Biological Nitrogen Fixation

  • Formāts: EPUB+DRM
  • Izdošanas datums: 16-Jun-2015
  • Izdevniecība: Wiley-Blackwell
  • Valoda: eng
  • ISBN-13: 9781118637210
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 465,10 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 16-Jun-2015
  • Izdevniecība: Wiley-Blackwell
  • Valoda: eng
  • ISBN-13: 9781118637210
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Nitrogen is arguably the most important nutrient required by plants. However, the availability of nitrogen is limited in many soils and although the earth's atmosphere consists of 78.1% nitrogen gas (N2) plants are unable to use this form of nitrogen. To compensate , modern agriculture has been highly reliant on industrial nitrogen fertilizers to achieve maximum crop productivity. However, a great deal of fossil fuel is required for the production and delivery of nitrogen fertilizer. Moreover carbon dioxide (CO2) which is released during fossil fuel combustion contributes to the greenhouse effect and run off of nitrate leads to eutrophication of the waterways. Biological nitrogen fixation is an alternative to nitrogen fertilizer. It is carried out by prokaryotes using an enzyme complex called nitrogenase and results in atmospheric N2 being reduced into a form of nitrogen diazotrophic organisms and plants are able to use (ammonia). It is this process and its major players which will be discussed in this book.

Biological Nitrogen Fixation is a comprehensive two volume work bringing together both review and original research articles on key topics in nitrogen fixation. Chapters across both volumes emphasize molecular techniques and advanced biochemical analysis approaches applicable to various aspects of biological nitrogen fixation.

Volume 1 explores the chemistry and biochemistry of nitrogenases, nif gene regulation, the taxonomy, evolution, and genomics of nitrogen fixing organisms, as well as their physiology and metabolism.

Volume 2 covers the symbiotic interaction of nitrogen fixing organisms with their host plants, including nodulation and symbiotic nitrogen fixation, plant and microbial "omics", cyanobacteria, diazotrophs and non-legumes, field studies and inoculum preparation, as well as nitrogen fixation and cereals.

Covering the full breadth of current nitrogen fixation research and expanding it towards future advances in the field, Biological Nitrogen Fixation will be a one-stop reference for microbial ecologists and environmental microbiologists as well as plant and agricultural researchers working on crop sustainability.
Biological Nitrogen Fixation

VOLUME 1

Chapter
1. Introduction  

Frans J. de Bruijn

Section
1. Focus
Chapters

Chapter
2. Recent advances in Understanding Nitrogenases and How They Work 

William Newton

Chapter
3. Evolution and Taxonomy of Nitrogen-fixing Organisms with emphasis
on Rhizobia 

Kristina Lindstrom

Chapter
4. Evolution of Rhizobium Nodulation: From Nodule Specific Genes
(Nodulins) to Recruitment of Common Processes

Ton Bisseling

Chapter
5. Bioengineering Nitrogen Acquisition in Rice: Promises for Global
Food Security

Herbert Kronzucker

Section
2. Chemistry and Biochemistry of Nitrogenases

Chapter
6. An Overview of Fe-S Protein Biogenesis from Prokaryotes to
Eukaryotes   

Mahipal Kesawat

Chapter
7. Biosynthesis of the Iron-Molybdenum Cofactor of Nitrogenase

Luis Rubio

Chapter
8. Distribution and Ecological Niches of Nitrogenases

Alexander Glazer

Section
3. Expression and Regulation of Nitrogen Fixation Genes and
Nitrogenase

Chapter
9. Regulation of nif Gene Expression in Azotobacter vinelandii 

Cesar Poza-Carrion, Luis Rubio

Chapter
10. Coupling of Regulation between Nitrogen and Carbon Metabolism in
Nitrogen Fixing Pseudomonas stutzeri A1501

Lin Min

Chapter
11. Regulation of NItrogen Fixation and Molybdenum Transport in
Rhodobacter capsulatus

Bernd Masepohl

Chapter 12.  Metabolic Regulation of Nitrogenase Activity in Rhodospirillum
rubrum: The Role of PII Proteins and Membrane Sequestration

Stefan Nordlund  

Chapter
13. How Does the DraG-PII Complex Regulate Nitrogenase Activity in
Azospirillum brasilense?

Xiao-Dan Li

Chapter
14. Fe Protein Over-expression Can Enhance the Nitrogenase Activity
of Azotobacter vinelandii 

Papri Nag

Chapter
15. FNR-like Proteins in Rhizobia: Past and Future

Lourdes Girard

Section
4. Taxonomy and Evolution of Nitrogen Fixing Organisms

Chapter
16. Exploring Alternative Paths for the Evolution of Biological
Nitrogen Fixation 

John Peters

Chapter
17. Phylogeny, Diversity, Geographical Distribution and Host Range
of Legume-Nodulating Betaproteobacteria: What Is the Role of Plant Taxonomy?

Lionel Moulin, Euan James  

Chapter 18. Bradyrhizobium, The Ancestor of All Rhizobia: Phylogeny of
Housekeeping and Nitrogen-fixation Genes

Mariangela Hungria

Chapter
19. Interaction between Host and Rhizobial Strains: Affinities and
Coevolution 

Mario Aguilar

Chapter
20. Assessment of Nitrogenase Diversity in the Environment  

Daniel Buckley

Section
5. Genomics of  Nitrogen Fixing Organisms

Chapter
21. Genetic Regulation of Symbiosis Island Transfer in Mesorhizobium
loti

Joshua Ramsay, Clive Ronson

Chapter 
22. The Azotobacter vinelandii Genome: An Update

Joao C. Setubal

Chapter
23. The Genome Sequence of the Novel Rhizobial Species Microvirga
lotononidis Strain WSM3557. 

Julie Ardley

Chapter
24. Genome Characteristics of Frankia sp. Reflect Host Range and
Host Plant Biogeography

Philippe Normand, David Benson 

Chapter
25. Core and Accessory Henomes of The Diazotroph Azospirillum 

Florence Wisniewski-Dye

Chapter
26. Pangenome Evolution in The Symbiotic Nitrogen Fixer
Sinorhizobium meliloti

Marco Galardini

Chapter 
27. Pangenomic Analysis of The Rhizobiales Using The GET_HOMOLOGUES
Software Package  

Pablo Vinuesa

Section
6. Physiology and Metabolism of Nitrogen Fixing Organisms

Chapter
28. Metabolism of Photosynthetic Bradyrhizobia During Root and Stem
Symbiosis with Aeschynomene legumes 

Benjamin Gourion

Chapter
29. A Plethora of Terminal Oxidases and Their Biogenesis Factors in
Bradyrhizobium japonicum 

Hauke Hennecke

Chapter
30. Rhizobial Extracytoplasmic Function (ECF) Factors and Their Role
in Oxidative Stress Response of Bradyrhizobium japonicum

Hans-Martin Fischer

Chapter
31. Role of the Bacterial BacA ABC-transporter in Chronic Infection
of Nodule Cells by Rhizobium

Peter Mergaert

Chapter
32. Molecular Keys to Broad Host Range in Sinorhizobium fredii
NGR234, USDA257 and HH103

Wolfgang Streit

Chapter
33. Motility and Chemotaxis in the Rhizobia

Michael Hynes

Chapter
34. The Pts/Ntr System Globally Regulates ATP-dependent Transporters
in Rhizobium leguminosarum

Jurgen Prell

Section
7. Nitrogen Fixing Organisms, the Plant Rhizosphere and Stress
Tolerance

Chapter
35. Actinorhizal Root Exudates Alter the Physiology, Surface
Properties and Plant Infectivity of Frankia

Louis Tisa

Chapter
36. Exopolysaccharide Production in Rhizobia is Regulated by
Environmental Factors  

Monika Janczarek

Chapter
37. Regulation of Symbiotically-Important Functions by Quorum
Sensing in the Sinorhizobium meliloti-Alfalfa Interaction

Juan Gonzales

Chapter
38. Lumichrome as a Bacterial Signal Molecule Influencing Plant
Growth

Felix Dakora   

Chapter
39. Genes Involved in Desiccation Resistance of Rhizobia and Other
Bacteria

Michael Kahn

Chapter
40. The General Stress Response in Alpha-rhizobia 

Claude Bruand

Section
8. Physiology and Regulation of Nodulation

Chapter
41. The Root Hair: A Single Cell Model for Systems Biology

Marc Libault  

Chapter
42. How Transcriptomics Revealed New Information on Actinorhizal
Symbioses Establishment and Evolution

Valerie Hocher

Chapter
43. Molecular Biology of Infection and Nodule Development in
Discaria trinervis Frankia Actinorhizal Symbiosis

Sergio Svistoonoff

Chapter
44. Lotus japonicus Nodulates When It Sees Red

Akihiro Suzuki

Chapter
45.  Out of Water of A New Model Legume: The Nod-independent
Aeschynomene evenia

Jean-Francois Arrighi

Chapter
46. Phosphorus Use Efficiency for N2 Fixation in The Rhizobial
Symbiosis with Legumes 

Jean Jacques Drevon  

Chapter
47. Regulation of Nodule Development by Short and Long Distance
Auxin Transport 

Ulrike Mathesius

Chapter
48. Functional Analysis of Nitrogen-Fixing Root Nodule Symbioses
Induced by Frankia: Transport and Metabolic Interactions

Alison Berry

Chapter
49. NOOT-dependent Control of Nodule Identity: Nodule Homeosis and
Meristem Perturbation

Pascal Ratet

Volume 2

Section
9. Recognition in Nodulation

Chapter
50. Roles for Flavonoids in Symbiotic Root-Rhizosphere
Interactions 

Ulrike Mathesius

Chapter
51. Nod Factor Recognition in Medicago truncatula

Jean Jacques Bono

Chapter
52. Role of Ectoapyrases in Nodulation

Gary Stacey

Chapter
53. Role of Rhizobium Cellulase CelC2 in Root Colonization and
Infection 

Pedro Mateos 

Chapter
54. Nod Factor-Induced Calcium Signaling in Legumes

Giles Oldroyd

Chapter
55. Signalling and Communication between Actinorhizal Plants and
Frankia During the Intracellular Symbiotic Process

Claudine Franche 

Section
10.   Infection and Nodule Ontogeny

Chapter
56. The Role of Hormones in Rhizobial Infection

Jeremy Murray  

Chapter
57. Nuclear Ca2+ Signaling Reveals Active Bacterial-Host Signaling
throughout Rhizobial Infection in Root Hairs of Medicago truncatula

David Barker 

Chapter
58. A Pectate Lyase Required for Plant-Cell Wall Remodelling During
Infection of Legumes by Rhizobia

Allan Downie 

Chapter
59. Dissecting The Roles in Outer and Inner Root Cell Layers of
Plant Genes That Control Rhizobial Infection and Nodule Organogenesis 

Clare Gough 

Chapter
60. The Medicago truncatula NIP/LATD Transporter Is Essential for
Nodulation and Appropriate Root Architecture

Rebecca Dickstein 

Chapter
61. A MYB Coiled Coil Type Transcription Factor Interacts with NSP2
and Is Essential for Nodulation in Lotus japonicus

Zhongming Zhang

Chapter
62. AP2/ERF Transcription Factors and Root Nodulation

Fernanda de Carvalo-Niebel 

Chapter
63. Identification of Medicago truncatula Genes Required for
Rhizobial Invasion and Bacteroid Differentiation

Peter Kalo

Chapter
64. Multifacetted Roles of Nitric Oxide in Rhizobium-Legume
Symbioses 

Eliane Meilhoc 

Chapter
65. Profiling Symbiotic Responses of Sinorhizobium fredii Strain
NGR234 with RNA-seq 

Xavier Perret 

Chapter
66. Computational and Experimental Evidence That Auxin Accumulation
in Nodule and Lateral Root Primordia Occurs by Different Mechanisms 

Eva Elisabeth Deinum   

Section
11.   Transitions from the Bacterial to the Bacteroid State

Chapter
67. Bacteroid Differentiation in Legume Nodules: Role of AMP-like
Host Peptides in the Control of the Endosymbiont

Eva Kondorosi

Chapter
68. The Symbiosome Membrane

Penelope Smith

Section
12. Nitrogen Fixation, Assimilation and Senescence in Nodules

Chapter
69. Nodulin Intrinsic Proteins: Facilitators of Water and Ammonia
Transport across the Symbiosome Membrane

Daniel Roberts

Chapter
70. Leghemoglobins with Nitrated Hemes in Legume Root Nodule 

Manuel Becana

Chapter
71. The Role of 1-aminocyclopropane-1-carboxylase Enzyme in
Leguminous Nodule Senescence

Neung Teaumroong

Section
13. Microbial Omics

Chapter
72. Pool-Seq Analysis of Microsymbiont Selection by the Legume Plant
Host

Juan Imperial

Chapter
73. Contribution of the RNA Chaperone Hfq to Environmental Fitness
and Symbiosis in Sinorhizobium meliloti  

José I. Jimenes-Zurdo 


Chapter
74. Biodiversity, Symbiotic Efficiency and Genomics of Rhizobium
tropici and Related Species

Mariangela Hungria

Chapter
75. The Frankia alni Symbiotic Transcriptome

Philippe Normand

Chapter
76. A Comprehensive Survey of Soil Rhizobiales Using High-Throughput
DNA Sequencing 

Ryan Jones

Chapter
77. Gene Targeted Metagenomics of Diazotrophs in Coastal Saline
Soil 

Bhanavath Jha 

Section
14.  Plant Omics and Functional Genetics

Chapter
78. The Medicago truncatula Genome 

Frederic Debellé 

Chapter
79. Leveraging Large-Scale Approaches to Dissect the Rhizobia-Legume
Symbiosis

Oswaldo Valdes-Lopez  

Chapter
80. LegumeIP: An Integrative Platform for Comparative Genomics and
Transcriptomics of Model Legumes

Patrick Xuechun Zhao

Chapter
81. Databases of Transcription Factors in Legumes

Lam-son Phan Tran

Chapter
82. Functional Genomics of Symbiotic Nitrogen Fixation in Legumes
with a Focus on Transcription Factors and Membrane Transporters 

Michael Udvardi    

Chapter
83. Retrotransposon (Tnt1)-insertion Mutagenesis in Medicago as a
Tool for Genetic Dissection of Symbiosis in Legumes

Michael Udvardi    

Section
15.  Cyanobacteria and Archaea

Chapter
84. Marine Titrogen Fixation: Organisms, Significance, Enigmas and
Future Directions 

Jonathan Zehr

Chapter
85. Requirement of Cell Wall Remodelling for Cell-Cell Communication
and Cell Differentiation in Filamentous Cyanobacteria of the Order
Nostocales 

Karl Forchhammer 

Chapter
86. Nitrogen Fixation in the Oxygenic Phototrophic Prokaryotes
(Cyanobacteria): The Fight Against Oxygen

Enrique Flores 

Chapter
87. Underestimation of Marine Dinitrogen Fixation: A Novel Method
and Novel Diazotrophic Habitats

Ruth Schmitz

Section
16. Diazotrophic Plant Growth Promoting Rhizobacteria and
Non-Legumes

Chapter
88. One Hundred Years Discovery of Nitrogen-Fixing Rhizobacteria

Claudine Elmerich

Chapter
89. Symbiotic Nitrogen Fixation in Legumes: Perspectives on the
Diversity and Evolution of Nodulation by Rhizobium and Burkholderia Species

Ann Hirsch

Chapter
90. Agronomic Applications of Azospirillum and Other PGPR

Yaacov Okon

Chapter
91. Auxin Signaling in Azospirillum brasilense: A Proteome Analysis

Stijn Spaepen 

Chapter
92. Genetic and Functional Characterization of Paenibacillus
riograndensis: A Novel Plant Growth Promoting Bacterium Isolated from Wheat

Luciane Passaglia

Chapter
93. Role of Herbaspirillum seropedicae LPS in Plant Colonization

Rose Adele Monteiro

Chapter
94. Culture-independent Assessment of Diazotrophic Bacteria in
Sugarcane and Isolation of Bradyrhizobium spp. from Field Grown Sugarcane
Plants Using Legume Trap Plants

Anton Hartmann

Chapter 
95. How Fertilization Affects the Selection of Plant Growth
Promoting Rhizobacteria by Host Plants

Luciane Passaglia 

Section
17. Field Studies, Inoculum Preparation, Applications of Nod
Factors

Chapter
96. Appearance of Membrane Compromised, Viable But Not Culturable
and Culturable Rhizobial Cells As A Consequence of Desiccation


Jan Vriezen

Chapter
97. Making the Most of High Quality Inoculants

Rosalind Deaker

Chapter
98. Rhizobiophages As Markers in The Selection of Symbiotically
Efficient Rhizobia for Legumes

Felix Dakora

Chapter
99. Nitrogen Fixation with Soybean: The Perfect Symbiosis? 

Mariangela Hungria 

Chapter
100. Nodule Functioning and Symbiotic Efficiency of Cowpea and
Soybean Varieties in Africa

Flora Pule Meulenberg

Chapter
101. Microbial Quality of Commercial Inoculants to Increase BNF and
Nutrient Use Efficiency

Didier Lesueur

Chapter 
102. Developed Fungal-Bacterial Biofilms Having Nitrogen Fixers:
Universal Biofertilizers for Legumes and Non-legumes

H.M. Herath 

Chapter
103. Phenotypic Variation in Azospirillum spp. and Other
Root-Associated Bacteria 

Anton Hartmann

Chapter
104. The physiological mechanisms of desiccation tolerance in
rhizobia 

Andrea Casteriano

Chapter
105. Food Grain Legumes: Their Contribution to Soil Fertility and
Human Nutrition and Health in Africa 

Felix Dakora

Chapter
106. Plant Breeding for Biological Nitrogen Fixation: A Review 


Peter Kennedy

Chapter
107. LCO Applications Provide Improved Responses with Legumes and
Non-legumes 

Stewart Smith

Section 18  Nitrogen Fixation and Cereals

Chapter
108. The Quest for Biological Nitrogen Fixation in Cereals : A
Perspective and Prospective

Frans J. de Bruijn    

Chapter
109. Environmental and Economic Impacts of Biological N2 Fixing
(BNF) Cereal Crops 

Perrin Beatty 

Chapter
110. Conservation of the Symbiotic Signalling Pathway between
Legumes and Cereals: Did Nodulation Constraints Drive Legume Symbiotic Genes
to Become Specialised During Evolution? 

Charles Rosenberg

Chapter
111. Occurrence and Ecophysiology of the Natural Endophytic
Rhizobium-rice Association, and Translational Assessment of its Biofertilizer
Performance within the Egypt Nile Delta 

Youssef Yanni

Section
19. Concluding
Chapters

Chapter
112. The Relevance of N-fixation and N-recyling for Insect Biomass
and N-balances of Ecosystems

Martin Heil  

Chapter
113. Rapid Identification of Nodule Bacteria with MALDI-TOF Mass
Spectrometry 

Xavier Perret 

Chapter
114. The Microbe-Free Plant: Fact or Artefact? 

Martin Heil     

 

 
Frans J. de Bruijn received his Ph.D. (Cellular and Developmental Biology; Microbial Genetics) from Harvard University in 1983. His resume reflects an array of experiences as a teacher, researcher, board member, and he is currently Director of Research at the Laboratory for Plant-Microbe Interactions in Toulouse, France.