Atjaunināt sīkdatņu piekrišanu

E-grāmata: Biologically Inspired Signal Processing for Chemical Sensing

Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Studies in Computational Intelligence 188
  • Izdošanas datums: 18-Feb-2009
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642001765
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Studies in Computational Intelligence 188
  • Izdošanas datums: 18-Feb-2009
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642001765

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Biologically inspired approaches for artificial sensing have been extensively applied to different sensory modalities over the last decades and chemical senses have been no exception. The olfactory system, and the gustatory system to a minor extent, has been regarded as a model for the development of new artificial chemical sensing s- tems. One of the main contributions to this field was done by Persaud and Dodd in 1982 when they proposed a system based on an array of broad-selective chemical sensors coupled with a pattern recognition engine. The array aimed at mimicking the sensing strategy followed by the olfactory system where a population of bro- selective olfactory receptor neurons encodes for chemical information as patterns of activity across the neuron population. The pattern recognition engine proposed was not based on bio-inspired but on statistical methods. This influential work gave rise to a new line of research where this paradigm has been used to build chemical sensing instruments applied to a wide range of odor detection problems. More recently, some researchers have proposed to extend the biological inspiration of this system also to the processing of the sensor array signals. This has been mo- vated in part by the increasing body of knowledge available on biological olfaction, which has become in the last decade a focus of attention of the experimental neu- science community.
Part I: Biological Olfaction
``Sloppy Engineering'' and the Olfactory System of Insects
3(30)
Thomas Nowotny
Introduction
3(4)
The Olfactory Pathway of Insects
4(2)
Assumptions and Conventions
6(1)
The AL-MB Fan-Out Phase
7(4)
Activity Levels in the MB
8(1)
Lossless Information Transmission
9(2)
The Classification Stage
11(7)
Classification of One Odor Input
12(4)
Classification of a Structured Set of Odor Input Patterns
16(2)
More detailed models
18(4)
The Role of Multiple Snapshots and Time Integration
22(1)
Discussion
23(2)
Appendix A: Probability Distribution for the Number of Active KC
25(1)
Appendix B: Collision Probability
26(2)
Appendix C: Probability of Proper Classification for One Input
28(5)
References
29(4)
From ANN to Biomimetic Information Processing
33(12)
Anders Lansner
Simon Benjaminsson
Christopher Johansson
Introduction
33(2)
The Underlying Abstract Model of Cortex
35(1)
Methods
35(5)
Partitioning of Input Space
35(1)
Decorrelation and Sparsification
36(1)
Associative Memory
37(1)
Data Sets
38(1)
MLP/BP and SVM Software
39(1)
Results
40(2)
Evaluation on Olfactory Bulb Activation Patterns
40(1)
Classification of MNIST Data
41(1)
Discussion and Conclusions
42(3)
References
42(3)
The Sensitivity of the Insect Nose: The Example of Bombyx Mori
45(8)
Karl-Ernst Kaissling
Introduction
45(1)
Molecule Capture by the Antenna
45(3)
Transport of Molecules on the Antenna
48(1)
Cellular Transduction
49(1)
Processing in the Central Nervous System
49(4)
References
51(2)
Multivariate Analysis of the Activity of the Olfactory Bulb
53(22)
I. Montoliu
K.C. Persaud
M. Shah
S. Marco
Introduction
53(2)
Methodology
55(5)
Staining
55(1)
Optical Section
55(1)
Data Processing
56(4)
Results
60(11)
MPCA Analysis
61(6)
ICA Analysis
67(4)
Conclusions
71(4)
References
72(3)
Part II: Artificial Olfaction and Gustation
Improved Odour Detection through Imposed Biomimetic Temporal Dynamics
75(18)
Tim C. Pearce
Manuel A. Sanchez-Montanes
Julian W. Gardner
Three Key Mechanisms for Discrimination of Complex Odours in Chemical Sensor Arrays
75(1)
An Artificial Olfactory Mucosa for Enhanced Complex Odour Analysis
76(5)
Artificial Olfactory Mucosa Fabrication
79(1)
Chemical Sensor Behaviour within the Artificial Mucosa
79(2)
Exploiting Temporal Responses in the Artificial Mucosa
81(9)
Olfactory Bulb Implementations for Spatiotemporal Processing of Odour Information
81(5)
Spatiotemporal Information Measures
86(4)
Conclusions
90(3)
References
91(2)
Relating Sensor Responses of Odorants to Their Organoleptic Properties by Means of a Biologically-Inspired Model of Receptor Neuron Convergence onto Olfactory Bulb
93(16)
Baranidharan Raman
Ricardo Gutierrez-Osuna
Introduction
93(1)
Odor Representation in the Early Stages of the Olfactory Pathway
94(1)
Infrared Absoption Spectroscopy
95(1)
Modeling Receptor Neuron Convergence
96(2)
Results
98(4)
Discussion
102(3)
Summary
105(4)
References
106(3)
A Novel Bio-inspired Digital Signal Processing Method for Chemical Sensor Arrays
109(12)
Eugenio Martinelli
Francesca Dini
Giorgio Pennazza
Maurizio Canosa
Arnaldo D'Amico
Corrado Di Natale
Introduction
109(1)
Method Description
110(5)
Details of Simulated Experiments
114(1)
Results and Discussion
115(4)
Conclusion
119(2)
References
119(2)
Monitoring an Odour in the Environment with an Electronic Nose: Requirements for the Signal Processing
121(16)
A.-C. Romain
J. Nicolas
Introduction
121(1)
Usual Methods to Measure the Odour Pollution
122(2)
Human Olfaction Measurement
122(2)
Analytical Techniques
124(1)
Artificial Olfaction for Measurement of Odour Pollution
124(4)
Interest for Environmental Application
124(1)
Stepwise Methodology
124(1)
Variability of the Operating Conditions
125(3)
Requirements for the Signal Processing When Using Artificial Olfaction Instrument in the Environment
128(6)
Context
128(1)
Sensor Drift and Calibration Gas
128(3)
Odour Quantification
131(2)
Useful Signal Detection
133(1)
Conclusion
134(3)
References
134(3)
Multivariate Calibration Model for a Voltammetric Electronic Tongue Based on a Multiple Output Wavelet Neural Network
137(32)
R. Cartas
L. Moreno-Baron
A. Merkoci
S. Alegret
M. del Valle
J.M. Gutierrez
L. Leija
P.R. Hernandez
R. Munoz
Introduction
137(1)
The Sense of Taste
138(3)
Electronic Tongue
141(1)
Artificial Neural Networks
142(5)
Biological Background
143(1)
Basic Structure of Feedforward Networks
144(1)
Training
145(1)
Data Selection
146(1)
Wavelet Transform Background
147(8)
Wavelet Transform
149(5)
Applications Related to the Sensors Field
154(1)
Wavelet Neural Network
155(5)
WNN Algorithm
157(2)
Training
159(1)
Initialization of Network Parameters
160(1)
Case Study in Chemical Sensing
160(3)
Conclusions
163(6)
References
164(5)
Author Index 169