Atjaunināt sīkdatņu piekrišanu

Biomedical Product and Materials Evaluation: Standards and Ethics [Mīkstie vāki]

Edited by (Scientist-G and Head, Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Govt. of India, India)
  • Formāts: Paperback / softback, 806 pages, height x width: 229x152 mm, weight: 1000 g, 150 illustrations (50 in full color); Illustrations
  • Sērija : Woodhead Publishing Series in Biomaterials
  • Izdošanas datums: 24-Jan-2022
  • Izdevniecība: Woodhead Publishing
  • ISBN-10: 0128239662
  • ISBN-13: 9780128239667
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 275,79 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 806 pages, height x width: 229x152 mm, weight: 1000 g, 150 illustrations (50 in full color); Illustrations
  • Sērija : Woodhead Publishing Series in Biomaterials
  • Izdošanas datums: 24-Jan-2022
  • Izdevniecība: Woodhead Publishing
  • ISBN-10: 0128239662
  • ISBN-13: 9780128239667
Citas grāmatas par šo tēmu:

Biomedical Product and Materials Evaluation: Standards and Ethics provides a much-needed overview of the procedures, issues, standards and ethical issues in the early development of biomedical products. The book covers a range of key biomedical products, from 3D printed organs and blood derived products, to stem calls and decellularized tissue products. Each chapter reviews a single product type, associated materials, biomedical applications, proven development strategies, and potential challenges. The core focus of the book is on the standardization and ethical aspects of biomedical product development, with these elements addressed and discussed in chapters dedicated to product evaluation.

This is a useful reference for academics, researchers and industry professionals in R&D groups with an interest in biomaterial research and production, as well as those working in the fields of biomedical engineering, biotechnology and toxicology.

  • Covers a variety of biomedical products, including specific biomaterials, organs-on-chips, wound care products, combinational products, and more
  • Delves into strategies and considerations for product evaluation, including cytotoxicity assays, microbial and blood compatibility studies
  • Discusses standardization and ethical hurdles in biomedical product development and how to overcome them
List of contributors
xxi
Preface xxvii
1 Overview of medical device development
1(24)
V. Vinodkumar
C. Amrutha
D.S. Nagesh
1.1 Introduction
1(1)
1.2 Planning
2(6)
1.2.1 Conceptualization
2(1)
1.2.2 Design inputs
3(3)
1.2.3 Documentation planning
6(1)
Design history file/design dossier
7(1)
Device master file
7(1)
1.2.4 Design verification planning: material and device evaluation matrices
7(1)
1.2.5 Use of horizontal, semihorizontal and vertical standards
8(1)
1.3 Design process
8(3)
1.3.1 Appropriatedesign
9(1)
1.3.2 Design calculation and analytical modeling
9(1)
1.3.3 Computer-aided design and manufacturing
9(1)
1.3.4 Design control
9(1)
1.3.5 Risk management
10(1)
1.3.6 Design review process
11(1)
1.3.7 Design changes
11(1)
1.4 Intellectual property right
11(1)
1.5 Design verification and validation
11(5)
Design verification
11(1)
Design validations
12(1)
1.5.1 Computer-aided techniques and in silico evaluation
12(1)
1.5.2 Validation of in silico results
13(1)
1.5.3 Prototype development and evaluation
13(1)
1.5.4 In vitro experiments in simulated environments
14(1)
1.5.5 In vitro experiments using blood
15(1)
1.5.6 Durability testing and accelerated durability testing
16(1)
1.6 Preclinical evaluation
16(1)
1.6.1 Preclinical animal evaluation
16(1)
1.7 Packaging, sterilization, and labeling
16(2)
1.7.1 Package validation
16(1)
1.7.2 Sterilization validation
17(1)
1.7.3 Labeling
17(1)
1.8 Clinical evaluation and clinical investigations
18(1)
1.9 Manufacturing
19(1)
1.10 Regulatory perspective
19(3)
Regulatory approval process
19(1)
1.10.1 India
19(2)
1.10.2 The United States
21(1)
1.10.3 Europe
22(1)
1.11 Postmarketing surveillance
22(1)
1.12 Conclusion
23(2)
References
23(2)
2 Biomaterials for medical products
25(38)
G. Gayathry
Manoj Komath
D. Shiny Velayudhan
2.1 Introduction
25(1)
2.2 Conceptualization of biomaterials
26(2)
2.2.1 Defining biomaterials
26(1)
2.2.2 Biomaterials in the biological milieu
27(1)
2.3 Evolution and categorization of biomaterials
28(2)
2.3.1 The generations of biomaterials
28(2)
2.3.2 Classes of biomaterials
30(1)
2.4 Natural biomaterials
30(2)
2.5 Synthetic biomaterials
32(7)
2.5.1 Metallic biomaterials
32(1)
2.5.2 Ceramic biomaterials
33(1)
2.5.3 Polymeric biomaterials
34(1)
2.5.4 Composites and coatings
35(4)
2.6 Medical products from biomaterials
39(6)
2.6.1 Orthopedic applications
39(3)
2.6.2 Maxillofacial
42(1)
2.6.3 Cardiovascular applications
43(1)
2.6.4 Ophthalmology
43(1)
2.6.5 Wound dressings
44(1)
2.7 Innovative applications
45(2)
2.7.1 Tissue engineering scaffolds
45(1)
2.7.2 Theranostic biomaterials
46(1)
2.8 New-generation materials and structures
47(4)
2.8.1 Nanoengineered materials
48(1)
2.8.2 Electrospun structures
49(1)
2.8.3 Structures by additive manufacturing
50(1)
2.9 Upcoming trends and future scope
51(12)
Acknowledgments
52(1)
References
52(11)
3 Evaluation of polymeric biomaterials used as wound care products
63(32)
Lynda Velutheril Thomas
3.1 Introduction
63(1)
3.2 Classification of wounds
64(2)
3.3 Type of wound dressings
66(8)
3.3.1 Passive products
66(1)
3.3.2 Interactive dressings
67(1)
3.3.3 Bioactive dressings
68(6)
3.4 Food and Drug Administration classification of wound care products
74(1)
3.5 Wound-dressing material characterization
74(9)
3.5.1 Physicochemical characterization studies
74(1)
3.5.2 Biological characterization studies
75(2)
3.5.3 Functional studies of wound dressing
77(6)
3.6 Toxicokinetic and pharmacokinetic studies and biodistribution studies
83(1)
3.7 Ethical and regulatory requirements (animals, human, biosafety, chemistry)
84(6)
3.8 Risk assessments of wound care materials and products
90(1)
3.9 Conclusion
90(5)
References
91(4)
4 Nanofibers: promising wound-healing material with modifiable flexibility
95(40)
Akansha Garg
Aishwarya Naik
Monalisa Chakraborty
Neha Chauhan
Saptomee Chakraborty
Sreyashi Das
Triya Saha
Santosh K. Misra
4.1 Introduction
95(3)
4.1.1 Natural process of wound healing
96(2)
4.2 Nanofibers
98(26)
4.2.1 Fabrication of nanofibers
98(4)
Drawing technique
102(1)
Island-in-sea technique
102(3)
Phase separation
105(1)
Self-assembly
105(1)
Template synthesis
106(1)
4.2.2 Polymers used to synthesize nanofibers
106(5)
Silk fibroin
111(2)
Gelatin
113(1)
Microbial cellulose
114(1)
Fibrinogen nanofibers
115(2)
Growth factors
117(7)
4.3 Conclusion and future prospects
124(11)
Acknowledgment
125(1)
References
125(10)
5 Three-dimensional bioprinting of tissues and organs
135(16)
Roopesh R. Pai
J. Anupama Sekar
Shilpa Ajit
D. Shiny Velayudhan
Naresh Kasoju
P.R. Anil Kumar
5.1 Introduction
135(1)
5.2 The three-dimensional bioprinting process
135(9)
5.2.1 Imaging and computer-aided designing
136(1)
5.2.2 Cells
137(1)
5.2.3 Bioink formulation
137(4)
5.2.4 Tissue and organ bioprinting technologies
141(2)
5.2.5 Tissue maturation
143(1)
5.3 3D bioprinted tissues and organs
144(1)
5.4 Challenges and future perspective
144(7)
Acknowledgments
146(1)
References
146(5)
6 3D printed organ for healthcare applications
151(28)
Gaurav Bartwal
Garima Rathee
Jyotsna Rathee
Pramod Kumar
Pratima R. Solanki
Abbreviations
151(1)
6.1 Introduction
151(3)
6.2 3D Bioprinting approaches
154(2)
6.2.1 Biomimicry
154(1)
6.2.2 Autonomous self-assembly
155(1)
6.2.3 Minitissues
155(1)
6.3 3D printing technologies
156(6)
6.3.1 Extrusion-based bioprinting
157(1)
6.3.2 Drop-based bioprinting (inkjet)
158(2)
6.3.3 Laser-assisted bioprinting
160(1)
6.3.4 Stereolithography-based 3D bioprinting
161(1)
6.4 3D printing organs via commercial materials
162(3)
6.4.1 Rigid plastic materials
162(1)
6.4.2 Elastomeric materials
163(1)
6.4.3 Powder-based materials
164(1)
6.4.4 Issues with previous and current 3D-printed organs
165(1)
6.5 3D printing organs via tissue-mimicking materials with personalized compositions
165(2)
6.6 Organ models with incorporated functionalities
167(1)
6.7 Applications of 3D-printed organs
168(1)
6.7.1 Organ donations
168(1)
6.7.2 Organ-on-a-chip
169(1)
6.7.3 Physical and surgical training
169(1)
6.7.4 Pharmaceutical research
169(1)
6.8 Legal and safety issues
169(2)
6.8.1 Regulation
170(1)
6.8.2 Ethical considerations
170(1)
6.9 Perspectives
171(1)
6.10 Summary
171(8)
References
172(7)
7 Overcoming the barriers of two-dimensional cell culture systems with three-dimensional cell culture systems: techniques, drug discovery, and biomedical applications
179(52)
Ankita Borah
D. Sakthi Kumar
7.1 Cell culture systems
179(4)
7.1.1 Introduction to two-dimensional cell culture systems
179(2)
7.1.2 Introduction to three-dimensional cell culture systems
181(2)
7.2 Characteristics of 2D versus 3D culture systems
183(5)
7.2.1 Cell culture conditions, morphology, and proliferation
183(1)
7.2.2 Gene and protein expression
184(1)
7.2.3 Extracellular matrix
185(1)
7.2.4 Drug discovery
186(2)
7.3 Techniques of the 3D cell culture system
188(10)
7.3.1 Spheroids
188(3)
7.3.2 Organoids
191(1)
7.3.3 Hydrogels and solid-state scaffolds
192(3)
7.3.4 Organs-on-a-chip
195(2)
7.3.5 3D bioprinting
197(1)
7.4 3D culture in toxicity evaluation: drug discovery and development
198(9)
7.4.1 Disease modeling
198(3)
7.4.2 Target determination and validation
201(1)
7.4.3 Hit identification
202(1)
7.4.4 Lead identification and optimization
203(2)
7.4.5 Toxicity profiling
205(2)
7.5 3D culture in biomedical applications
207(5)
7.5.1 Tumor biology research and applications
207(2)
7.5.2 3D culture in regenerative medicine
209(2)
7.5.3 Cell-based biosensors
211(1)
7.6 Future challenges and prospects
212(19)
Acknowledgments
213(1)
References
213(18)
8 Blood-derived products
231(28)
Renjith P. Nair
P. Lekshmi
Anugya Bhatt
8.1 Introduction
231(1)
8.1.1 Collection of blood and its components
232(1)
8.2 Different types of blood-derived products
232(7)
8.2.1 Red blood cell concentrate
235(2)
8.2.2 Fresh frozen plasma
237(1)
8.2.3 Cryoprecipitate and cryoprecipitate-reduced plasma
238(1)
8.2.4 Platelet concentrate
238(1)
8.2.5 Platelet-rich plasma
239(1)
8.3 Plasma-derived products
239(8)
8.3.1 Albumin
240(3)
8.3.2 Immunoglobulin G
243(1)
8.3.3 Fibrinogen
243(1)
8.3.4 Factor VIII
244(1)
8.3.5 Factor IX
244(1)
8.3.6 Von willebrand factor
245(1)
8.3.7 Factor XIII
245(1)
8.3.8 Fibrin glue or sealant
245(1)
8.3.9 Prothrombin complex concentrate
246(1)
8.3.10 Thrombin
246(1)
8.4 Viral inactivation of blood-derived products
247(2)
8.5 Regulation of blood and blood products
249(2)
8.6 Conclusion
251(8)
References
251(8)
9 Medical products from stem cells
259(16)
Syama Santhakumar
P. V. Mohanan
9.1 Introduction
259(1)
9.2 Stem cells for eye diseases
260(2)
9.3 Stem cells for bone diseases
262(1)
9.4 Stem cells for cardiovascular diseases
263(2)
9.5 Clinical trials: regulation
265(1)
9.6 Clinically approved stem cell products
266(3)
9.6.1 Food and drug administration-approved stem cell products
266(1)
9.6.2 Ministry of food and drug safety-approved stem cell products
267(1)
9.6.3 European medicines agency-approved stem cell products
268(1)
9.6.4 Pharmaceuticals and medical devices agency-approved stem cell products
268(1)
9.7 Safety concerns
269(1)
9.8 Conclusion
269(6)
Conflict of interest
270(1)
References
270(5)
10 An overview of legal and regulatory challenges of biological products
275(12)
Manvi Singh
Pratima R. Solanki
10.1 Introduction
275(1)
10.2 Regulation of cell and gene therapy
276(1)
10.3 Regulation of tissue-based products
277(3)
10.3.1 Regulatory framework in the European Union
277(2)
10.3.2 Regulatory framework in the United States
279(1)
10.3.3 Regulatory framework in Australia
279(1)
10.4 Regulation of nanomedicine
280(1)
10.5 Biosimilars
281(6)
10.5.1 Legal framework in Europe
281(2)
10.5.2 Legal framework in the United States
283(1)
References
283(4)
11 The evolving regulatory framework for next-generation stem cell---based pharmaceutical products
287(22)
S. Singh
A.B. Pant
11.1 Introduction
287(1)
11.2 Stem cell---based therapy and pharmaceuticals
288(2)
11.3 Types of stem cell---based pharmaceuticals
290(2)
11.4 The regulatory requirement for stem cell---based research and products
292(1)
11.5 The regulatory framework in the United States
292(4)
11.5.1 Risk-based regulatory tiers for regenerative therapies
294(1)
11.5.2 Middle-tier products
295(1)
11.5.3 Highest-tier products
295(1)
11.6 The regulatory framework in the European Union
296(4)
11.6.1 The first stem cell therapy recommended for approval in the European Union
299(1)
11.7 The regulatory framework in Japan
300(2)
11.8 The regulatory framework in India
302(2)
11.9 Conclusion
304(5)
References
304(5)
12 Regulatory issues in biological products
309(20)
V.P. Sangeetha
N.S. Remya
P.V. Mohanan
12.1 Introduction
309(1)
12.2 Regulations of biological products
309(2)
12.3 FDA regulation of biologicals
311(1)
12.4 Biological product development process
312(3)
12.4.1 Discovery and research
312(1)
12.4.2 Development
312(1)
12.4.3 Nonclinical studies
312(1)
12.4.4 Clinical studies
313(1)
12.4.5 Regulatory review and approval
314(1)
12.4.6 Commercialization and marketing
315(1)
12.5 National regulations for biological products
315(1)
12.6 Overview of regulatory requirements for biological products
315(10)
12.6.1 Selection of a control or reference biological product
317(1)
12.6.2 Manufacturing process of biological products
317(1)
12.6.3 Quality requirements at the preclinical submission stage
317(2)
12.6.4 Preclinical studies
319(4)
12.6.5 Clinical trials
323(1)
12.6.6 Market survey
324(1)
12.7 Conclusion
325(4)
Conflict of interest
325(1)
Data availability
325(1)
Acknowledgment
325(1)
References
325(4)
13 In vitro cytotoxicity and cytocompatibility assays for biomaterial testing under regulatory platform
329(26)
Remya Komeri
Naresh Kasoju
P.R. Anil Kumar
Abbreviations
329(1)
13.1 Introduction
329(1)
13.2 Cytotoxicity versus cytocompatibility
330(1)
13.2.1 Cytotoxicity
330(1)
13.2.2 Cytocompatibility
331(1)
13.3 Elements of cytotoxicity test
331(1)
13.3.1 Cells
331(1)
13.3.2 Control materials
331(1)
13.3.3 Test sample
332(1)
13.4 Cytotoxicity assays
332(7)
13.4.1 Test by direct contact
333(1)
13.4.2 Indirect contact assay
334(1)
13.4.3 Test on extract assay
335(1)
13.4.4 Semiquantitative methods
335(2)
13.4.5 Quantitative methods
337(2)
13.5 Cytocompatibility assays
339(9)
13.5.1 Qualitative methods
339(5)
13.5.2 Semiquantitative methods
344(1)
13.5.3 Quantitative
345(3)
13.6 Summary
348(7)
Acknowledgments
349(1)
References
349(6)
14 Ethical issues in animal experimentation
355(18)
V.S. Harikrishnan
14.1 Introduction
355(1)
14.2 Animal welfare and its assessment
356(3)
14.3 Ethics
359(3)
14.3.1 Contractarianism
360(1)
14.3.2 Utilitarianism
361(1)
14.3.3 Animal rights view
361(1)
14.3.4 Respect to nature view
361(1)
14.3.5 Relational view
361(1)
14.4 Laws and regulations in animal experimentation
362(3)
14.4.1 Indian scenario
362(1)
14.4.2 International scenario
363(2)
14.5 The science involved in laboratory animal science
365(5)
14.5.1 The 3 Rs in biomedical research
365(5)
14.6 Conclusion
370(3)
References
371(2)
15 Product evaluation: cytotoxicity assays
373(36)
Surjith Ramasamy
Kannan Pakshirajan
15.1 Introduction
373(1)
15.2 Dye exclusion assays
374(15)
15.2.1 Trypan blue
375(1)
15.2.2 Erythrosin B
376(13)
15.3 Colorimetric assay
389(10)
15.3.1 MTT assay
389(2)
15.3.2 MTS assay
391(1)
15.3.3 XTT assay
392(1)
15.3.4 WST assay
393(2)
15.3.5 LDH assay
395(1)
15.3.6 SRB assay
396(1)
15.3.7 NRU assay
396(2)
15.3.8 CVS assay
398(1)
15.4 Fluorometric assay
399(2)
15.4.1 Alamar Blue Assay
399(1)
15.4.2 CFDA-AM assay
400(1)
15.4.3 GF-AFC assay
400(1)
15.5 Luminometric assays
401(2)
15.5.1 ATP assay
401(2)
15.5.2 Real-time assay
403(1)
15.6 Conclusions
403(6)
References
404(5)
16 Product evaluation: safety and toxicity studies
409(26)
Tanushree Paul
Moumita Nandi
Kannan Pakshirajan
G. Pugazhenthi
16.1 Introduction
409(1)
16.2 The necessity of toxicity testing and regulatory approvals and standards
410(1)
16.3 Toxicology studies
411(18)
16.3.1 Biocompatibility tests
412(11)
16.3.2 Genotoxicity
423(2)
16.3.3 Systemic toxicity, irritation, and sensitization
425(3)
16.3.4 Immunotoxicity
428(1)
16.4 Conclusions and future perspectives
429(6)
References
430(5)
17 Product evaluation: blood compatibility studies
435(26)
Anugya Bhatt
Renjith P. Nair
R. Rashmi
Riya Raju
Rency Geeverghese
P. Lekshmi
17.1 Introduction
435(1)
17.2 Exposure of the device to the blood
436(2)
17.3 Factors to be considered before blood-material interaction
438(5)
17.3.1 Blood collection and qualification
438(1)
17.3.2 Anticoagulation
439(1)
17.3.3 Interaction time
440(1)
17.3.4 Material-cleaning procedure
440(1)
17.3.5 Selection of tests
441(1)
17.3.6 Material properties, surface area, shear rate, and design
441(2)
17.4 Analysis of blood parameters
443(10)
17.4.1 Hematology
443(1)
17.4.2 Osmotic pressure
444(1)
17.4.3 Physical or chemical properties of materials
444(1)
17.4.4 Mechanical forces
444(2)
17.4.5 Coagulation
446(3)
17.4.6 Platelets
449(2)
17.4.7 Compliment activation
451(1)
17.4.8 Thrombosis
452(1)
17.5 Assessment of device performance
453(1)
17.6 Conclusions
454(7)
References
454(7)
18 Product evaluation: Necropsy and Histopathological methods
461(22)
Yogeshkumar Murkunde
18.1 Introduction
461(1)
18.2 Necropsy
462(6)
18.2.1 Prerequisites and preliminary arrangements for necropsy
462(1)
18.2.2 Euthanasia or sacrifice of animals
463(1)
18.2.3 Euthanasia by carbon dioxide
463(1)
18.2.4 Euthanasia by an overdose of anesthetics followed by rapid exsanguination
464(1)
18.2.5 Necropsy procedures
464(1)
18.2.6 Gross pathology observations and recording
465(1)
18.2.7 Photographic records
466(1)
18.2.8 Collection of tissues and specimens
466(2)
18.3 Histotechnology procedures
468(8)
18.3.1 Tissue trimming
468(1)
18.3.2 Tissue processing
468(1)
18.3.3 Tissue embedding
469(1)
18.3.4 Tissue sectioning
469(1)
18.3.5 Tissue staining
470(1)
18.3.6 Histopathology
471(3)
18.3.7 Histopathology of implanted materials
474(2)
18.4 Conclusion
476(7)
References
476(7)
19 Toxicity studies of biomedical products
483(18)
N.S. Remya
V.P. Sangeetha
P.V. Mohanan
19.1 Introduction
483(1)
19.2 Toxicity studies applicable to biological products
484(13)
19.2.1 General conditions for the conduct of preclinical toxicological studies
486(1)
19.2.2 Acute (single-dose) toxicity studies
486(1)
19.2.3 Subacute toxicity studies
486(1)
19.2.4 Subchronic toxicity studies
487(1)
19.2.5 Chronic toxicity studies
487(1)
19.2.6 Carcinogenic studies
487(1)
19.2.7 Reproduction toxicity studies
488(1)
19.2.8 Mutagenicity
488(2)
19.2.9 Immunogenicity and immunotoxicity
490(1)
19.2.10 Safety studies
491(2)
19.2.11 Pyrogenicity
493(2)
19.2.12 Sterility studies
495(2)
19.3 Conclusion
497(4)
Acknowledgments
497(1)
Conflict of interest
497(1)
Data availability
497(1)
References
498(3)
20 Alternatives to animal testing: concepts, state of art, and regulations
501(30)
R.K. Athira
R. Kripamol
M.S. Anju
B. Maya
Roopesh R. Pai
Shilpa Ajit
M.R. Aswathy
P.R. Anil Kumar
Naresh Kasoju
Abbreviations
501(1)
20.1 Introduction
501(2)
20.2 Animal testing: pros and cons
503(1)
20.3 In silico alternative systems
504(1)
20.4 In chemico alternative systems
505(2)
20.5 Alternative systems: in vitro cell culture systems
507(8)
20.5.1 Subcellular fractions as assay systems
507(2)
20.5.2 Cell-based conventional 2D assay systems
509(3)
20.5.3 Cell-based advanced 3D assay systems
512(3)
20.6 Alternative systems: ex vivo assay systems
515(2)
20.7 Regulatory aspects
517(1)
20.8 Conclusions and outlook
518(13)
Acknowledgments
521(1)
References
521(10)
21 Toxicity testing of natural products using the zebrafish model system
531(24)
Arjun Pitchai
Rajaretinam Rajesh Kannan
Jennifer L. Freeman
21.1 Introduction
531(3)
21.2 Methods and procedures for toxicity testing of natural products
534(11)
21.2.1 Fish husbandry, attainment of embryos for testing procedures, and embryo dosing
534(3)
21.2.2 Zebrafish developmental toxicity analysis
537(3)
21.2.3 Behavior assays
540(5)
21.3 Conclusions
545(10)
Funding Sources
545(1)
References
546(9)
22 Engineered in vitro models: mimicking in vivo physiology
555(56)
Lekha Shah
Annalisa Tirella
22.1 Overview
555(1)
22.2 The tissue microenvironment
556(13)
22.2.1 Cellular components
557(4)
22.2.2 Biochemical factors
561(3)
22.2.3 Biophysical components
564(4)
22.2.4 Functional tissue unit
568(1)
22.3 Traditional in vitro models: two-dimensional tissue culture
569(6)
22.3.1 Regulation and qualification of materials used in cell culture
571(2)
22.3.2 Limitations of traditional in vitro models
573(2)
22.4 Three-dimensional cultures
575(19)
22.4.1 Spheroids
576(3)
22.4.2 Scaffold-based three-dimensional culture
579(3)
22.4.3 Additive manufacturing of 3D scaffolds
582(2)
22.4.4 Properties of scaffold for in vitro models
584(4)
22.4.5 Organoids
588(3)
22.4.6 Organ-on-a-chip
591(3)
22.5 Regulation for good practices within in vitro models
594(2)
22.6 Conclusions
596(15)
References
596(15)
23 Organ-on-a-chip for toxicity evaluation
611(24)
Joseph Xavier
Akhil Venugopal
Arathi Ashok
P. V. Mohanan
23.1 Introduction
611(1)
23.2 Microfluidics
612(3)
23.2.1 Microfluidic device fabrication
613(1)
23.2.2 Device fabrication using polydimethylsiloxane
613(1)
23.2.3 Design simulation using multiphysics software
614(1)
23.3 Organ-on-a-chip
615(11)
23.3.1 Liver-on-a-chip
616(2)
23.3.2 Kidney-on-a-chip
618(2)
23.3.3 Brain-on-a-chip
620(2)
23.3.4 Lung-on-a-chip
622(2)
23.3.5 Eye-on-a-chip
624(1)
23.3.6 Multiorgan-on-a-chip
625(1)
23.4 Application of organ-on-a-chip for toxicity studies
626(2)
23.5 Absorption, distribution, metabolism, excretion studies by multiorgan-on-a-chip
628(1)
23.6 Conclusion
629(6)
Acknowledgments
629(1)
Conflict of interest
629(1)
Data availability
629(1)
References
630(5)
24 Therapeutic applications of probiotics and its regulatory framework
635(32)
Kuljit Singh
Tejinder Kaur
Alka Rao
24.1 Introduction
635(3)
24.2 Characteristics of an ideal probiotic
638(1)
24.3 Screening and selection of probiotics
638(2)
24.4 Significance and therapeutic uses of probiotics
640(11)
24.4.1 Probiotics for inflammatory bowel disease
640(2)
24.4.2 Probiotics for host mental health
642(1)
24.4.3 Probiotics for colon cancer
643(2)
24.4.4 Probiotics for obesity management
645(2)
24.4.5 Probiotics for oral health
647(4)
24.5 Regulatory aspects of probiotics intended for pharmaceutical applications
651(3)
24.5.1 Current global regulations
652(1)
24.5.2 Current regulations in India
652(1)
24.5.3 Call for comprehensive global regulations for use of probiotics in pharmaceutical industry
653(1)
24.6 Conclusions and future perspectives
654(13)
References
654(13)
25 Microbes as biomedicinal minifactories and medical product evaluation models
667(36)
Bishal Pun
S.R. Joshi
25.1 Introduction
667(1)
25.2 Microbial biomedicinal pfoducts
668(4)
25.2.1 Antibiotics
670(1)
25.2.2 Antitumor agents
671(1)
25.2.3 Ergot alkaloids
672(1)
25.3 Approaches for microbial product improvement
672(3)
25.3.1 Strain improvement
672(1)
25.3.2 Pathway engineering
673(1)
25.3.3 Combinatorial biosynthesis
674(1)
25.4 Microbial cell factories
675(6)
25.4.1 Escherichia coli
676(3)
25.4.2 Lactococcus lactis
679(1)
25.4.3 Streptomyces species
679(1)
25.4.4 Bacillus species
679(1)
25.4.5 Saccharomyces cerevisiae
680(1)
25.4.6 Aspergillus species
681(1)
25.4.7 Hansenula polymorpha
681(1)
25.5 Microbial drug evaluation model
681(3)
25.5.1 Mammalian metabolism of drugs
682(2)
25.6 Factors in microbial drug evaluation model development
684(4)
25.6.1 Selection of a suitable microorganism
684(1)
25.6.2 Incubation protocol
684(3)
25.6.3 Analysis of drugs and metabolites
687(1)
25.7 Pathogen detection methods
688(4)
25.7.1 Culture- and colony-based method
688(1)
25.7.2 Immunology-based method
688(2)
25.7.3 Nucleic acid-based method
690(1)
25.7.4 DNA microarray
691(1)
25.7.5 Whole-genome sequencing
691(1)
25.8 Conclusion and future prospects
692(11)
Acknowledgment
693(1)
References
693(10)
26 Neurotoxicity assays
703(22)
V.A. Arshajyothirmayi
Kamalesh K. Gulia
26.1 Introduction
703(2)
26.1.1 What is neurotoxicity?
703(1)
26.1.2 Neurotoxicity requirements in the regulatory setup
704(1)
26.2 Neurotoxicity assays
705(7)
26.2.1 In vitro neurotoxicity assays
705(2)
26.2.2 Developmental neurotoxicity testing guideline TG 426
707(4)
26.2.3 In vivo neurotoxicity assays
711(1)
26.3 Animal models of neurotoxicity
712(5)
26.3.1 Behavioral and functional tests
713(1)
26.3.2 Irwin test
714(1)
26.3.3 Functional observational battery
715(1)
26.3.4 SHIRPA
715(1)
26.3.5 Balance beam test
716(1)
26.3.6 Rotarod test
716(1)
26.3.7 Open field test
716(1)
26.3.8 Elevated plus maze
717(1)
26.4 Conclusion
717(8)
Acknowledgments
717(1)
References
718(7)
27 Sterilization for biological products
725(18)
Arathi Ashok
Seema A. Nayar
Pramod Shankar
Apurba Das
P. V. Mohanan
27.1 Introduction
725(1)
27.2 Sterilization methods
726(8)
27.2.1 Steam sterilization
726(1)
27.2.2 Ethylene oxide sterilization
727(2)
27.2.3 Plasma sterilization
729(2)
27.2.4 Alcohol sterilization
731(1)
27.2.5 Radiation sterilization
732(2)
27.3 Sterilization of biological products
734(4)
27.3.1 Types of biological products and their sterilization methods
735(3)
27.4 Sterilization: residual toxicity
738(1)
27.5 Effects of improper sterilization
738(1)
27.6 Conclusion
739(4)
Acknowledgments
739(1)
Conflict of interest
739(1)
Data availability
740(1)
References
740(3)
Index 743
Dr. Mohanan FNASc, is the Head of the Division of Toxicology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India). He is a visiting professor and visiting researcher at Toyo University, Japan and a Certified Biological Safety Specialist. Previously, he was a JSPS Post doctoral Fellow at the University of Tsukuba, Japan in the field of Neurotoxicity. He joined Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Govt. of India in 1989 and has spent 33 years of professional life working there. As a toxicologist he has been intimately associated with all the medical devices/technologies developed at SCTIMST. He received the lifetime achievement award from the Society of Toxicology India, for the outstanding contribution in the field of toxicology. He also patented an ELISA kit for the measurement of pyrogenicity. Mohanan made significant contributions for the development of medical device regulations in India. He has authored 231 publications and edited 6 books. Presently he is the secretary general of the Society of Toxicology, India.