Atjaunināt sīkdatņu piekrišanu

E-grāmata: BioMEMS: Science and Engineering Perspectives

  • Formāts: 368 pages
  • Izdošanas datums: 19-Apr-2016
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781439891162
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 57,38 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 368 pages
  • Izdošanas datums: 19-Apr-2016
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781439891162
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

As technological advancements widen the scope of applications for biomicroelectromechanical systems (BioMEMS or biomicrosystems), the field continues to have an impact on many aspects of life science operations and functionalities. Because BioMEMS research and development require the input of experts who use different technical languages and come from varying disciplines and backgrounds, scientists and students can avoid potential difficulties in communication and understanding only if they possess a skill set and understanding that enables them to work at the interface of engineering and biosciences.





Keeping this duality in mind throughout, BioMEMS: Science and Engineering Perspectives supports and expedites the multidisciplinary learning involved in the development of biomicrosystems. Divided into nine chapters, it starts with a balanced introduction of biological, engineering, application, and commercialization aspects of the field. With a focus on molecules of biological interest, the book explores the building blocks of cells and viruses, as well as molecules that form the self-assembled monolayers (SAMs), linkers, and hydrogels used for making different surfaces biocompatible through functionalization.





The book also discusses:



















Different materials and platforms used to develop biomicrosystems













Various biological entities and pathogens (in ascending order of complexity)













The multidisciplinary aspects of engineering bioactive surfaces













Engineering perspectives, including methods of manufacturing bioactive surfaces and devices













Microfluidics modeling and experimentation













Device level implementation of BioMEMS concepts for different applications.











Because BioMEMS is an application-driven field, the book also highlights the concepts of lab-on-a-chi
Preface xv
The Authors xvii
Chapter 1 Introduction 1(8)
1.1 Introduction to BioMEMS
1(1)
1.2 Application Areas
2(1)
1.3 Intersection of Science and Engineering
3(1)
1.4 Evolution of Systems Based on Size
3(1)
1.5 Commercialization, Potential, and Market
4(4)
References
8(1)
Chapter 2 Substrate Materials Used in BioMEMS Devices 9(16)
2.1 Introduction
9(1)
2.2 Metals
9(1)
2.3 Glasses and Ceramics
10(3)
2.4 Silicon and Silicon-Based Surfaces
13(1)
2.5 Polymers
14(5)
2.6 Biopolymers
19(1)
2.7 Organic Molecules (Functional Groups) Involved in the Formation of Self-Assembled Monolayers
20(2)
References
22(1)
Review Questions
23(2)
Chapter 3 Biomolecules and Complex Biological Entities: Structure and Properties 25(44)
3.1 Amino Acids
25(6)
3.2 Polypeptides and Proteins
31(4)
3.3 Lipids
35(7)
3.3.1 Fatty Acids and Their Esters
36(1)
3.3.2 Phospholipids
37(3)
3.3.3 Lipoproteins
40(2)
3.4 Nucleotides and Nucleic Acids
42(5)
3.4.1 Nucleotides
42(1)
3.4.2 Nucleic Acids
42(4)
3.4.3 DNA Sensing Strategies
46(1)
3.5 Carbohydrates
47(4)
3.5.1 Introduction
47(1)
3.5.2 Monosaccharides
48(1)
3.5.3 Oligosaccharides and Polysaccharides
48(3)
3.5.4 Biosensing Applications
51(1)
3.6 Enzymes
51(4)
3.6.1 Definition and Nomenclature
51(1)
3.6.2 Mechanism of the Enzymatic Catalysis
52(1)
3.6.3 Catalysis by RNA
53(1)
3.6.4 Applications of Enzymes in Biotechnology and Biosensing
53(2)
3.7 Cells
55(6)
3.7.1 Cellular Organization
55(2)
3.7.2 Cell Movement
57(3)
3.7.3 Whole Cell Biosensors: Applications
60(1)
3.8 Bacteria and Viruses
61(4)
3.8.1 Bacterial Cell Structure
62(1)
3.8.2 Virus Structure
63(1)
3.8.3 Biosensors and BioMEMS Sensor Systems for the Detection of Pathogenic Microorganisms and Bacterial Toxins
64(1)
References
65(1)
Review Questions
66(3)
Chapter 4 Engineering of Bioactive Surfaces 69(26)
4.1 Introduction
69(3)
4.2 Plasma Treatment and Plasma-Mediated Surface Modification
72(4)
4.3 Surface Modifications Mediated by Self-Assembled Monolayers (SAMs)
76(2)
4.4 Langmuir-Blodgett and Layer-by-Layer Assembly
78(2)
4.5 Biosmart Hydrogels
80(1)
4.6 Immobilization and Detection of Biomolecules by Using Gold Nanoparticles: Case Studies
80(3)
4.6.1 Gold Nanoparticles Functionalized by Dextran
80(1)
4.6.2 Gold Nanoparticles in Hybridization Experiments
81(1)
4.6.3 Enhanced Biomolecular Binding Sensitivity by Using Gold Nanoislands and Nanoparticles
81(1)
4.6.4 Study of Antigen-Antibody Interactions by Gold Nanoparticle Localized Surface Plasmon Resonance Spectroscopy
82(1)
4.6.5 Array of Gold Nanoparticles for Binding of Single Biomolecules
83(1)
4.7 Biomimetic Surface Engineering
83(2)
4.8 Attachment of Proteins to Surfaces
85(3)
4.9 Surface Modification of Biomaterials for Tissue Engineering Applications
88(5)
4.10 Temperature-Responsive Intelligent Interfaces
93(1)
References
93(1)
Review Questions
94(1)
Chapter 5 Methods of Study and Characterization of Surface-Modified Substrates 95(30)
5.1 Contact Angle
95(7)
5.1.1 Introduction to Contact Angle and Surface Science Principles
95(1)
5.1.2 Contact Angle Measurement
96(3)
5.1.3 Evaluation of Hydrophobicity of the Modified Surfaces by Contact Angle Measurements: Case Studies
99(3)
5.1.3.1 Sensitivity of Contact Angle to Surface Treatment
99(1)
5.1.3.2 Contact Angle Measurements of Surfaces Functionalized with Polyethyleneglycol (PEG)
100(1)
5.1.3.3 Study of Surface Wettability of Polypyrrole for Microfluidics Applications
100(1)
5.1.3.4 Wetting Properties of an Open-Channel Microfluidic System
100(1)
5.1.3.5 Contact Angle Analysis of the Interfacial Tension
101(1)
5.2 Atomic Force Microscopy (AFM)
102(8)
5.2.1 Basic Concepts of AFM and Instrumentation
102(1)
5.2.2 AFM Imaging of Biological Sample Surfaces
103(7)
5.2.2.1 Ex Situ and In Situ AFM Characterization of Phospholipid Layers Formed by Solution Spreading (Casting) on a Mica Substrate
106(1)
5.2.2.2 Study of Bacterial Surfaces in Aqueous Solution
106(1)
5.2.2.3 AFM Study of Native Polysomes of Saccharomyces in a Physiological Buffer Solution
106(1)
5.2.2.4 Single DNA Molecule Stretching Experiments by Using Chemical Force Microscopy
107(1)
5.2.2.5 AFM Measurements of Competitive Binding Interactions between an Enzyme and Two Ligands
107(2)
5.2.2.6 Study of Antigen-Antibody Interactions by Molecular Recognition Force Microscopy (MRFM)
109(1)
5.2.2.7 Study of Cancer Alterations of Single Living Cells by AFM
110(1)
5.3 X-Ray Photoelectron Spectroscopy
110(5)
5.3.1 Introduction
110(2)
5.3.2 X-Ray Photoelectron Spectroscopy of Biologically Important Materials
112(3)
5.3.2.1 Peptide Nucleic Acids on Gold Surfaces as DNA Affinity Biosensors
114(1)
5.3.2.2 Application of XPS to Probing Enzyme-Polymer Interactions at Biosensor Interfaces
114(1)
5.3.2.3 Detection of Adsorbed Protein Films at Interfaces
115(1)
5.4 Confocal Fluorescence Microscopy
115(2)
5.4.1 Introduction
115(2)
5.4.2 Biological Confocal Microscopy: Case Studies
117(1)
5.4.2.1 Bioconjugated Carbon Nanotubes for Biosensor Applications
117(1)
5.5 Attenuated Total Reflection (Internal Reflection) Infrared Spectroscopy
117(4)
5.5.1 Introduction: ATR-FTIR Basics
117(2)
5.5.2 Applications of ATR-FTIR Spectroscopy to Biomolecules and Biomedical Samples: Case Studies
119(6)
5.5.2.1 Hydration Studies of Surface Adsorbed Layers of Adenosine-5'-Phosphoric Acid and Cytidine-5'-Phosphoric Acid by Freeze-Drying ATR-FTIR Spectroscopy
119(1)
5.5.2.2 Study of the Interaction of Local Anesthetics with Phospholipid Model Membranes
119(1)
5.5.2.3 Assessment of Synthetic and Biologic Membrane Permeability by Using ATR-FTIR Spectroscopy
120(1)
5.5.2.4 ATR Measurement of the Physiological Concentration of Glucose in Blood by Using a Laser Source
120(1)
5.5.2.5 Application of ATR-FTIR Spectroscopic Imaging in Pharmaceutical Research
120(1)
5.6 Mechanical Methods: Use of Micro- and Nanocantilevers for Characterization of Surfaces
121(1)
References
122(1)
Review Questions
123(2)
Chapter 6 Biosensing Fundamentals 125(32)
6.1 Biosensors
125(20)
6.1.1 Introduction
125(4)
6.1.2 Classification: Case Studies
129(16)
6.1.2.1 Enzyme-Based Biosensors
130(8)
6.1.2.2 Nucleic-Acid-Based Biosensors
138(2)
6.1.2.3 Antibody-Based Biosensors
140(4)
6.1.2.4 Microbial Biosensors
144(1)
6.2 Immunoassays
145(6)
6.2.1 Introduction
145(2)
6.2.2 Enzyme-Linked Immunosorbent Assay (ELISA)
147(2)
6.2.3 Microfluidic Immunoassay Devices
149(8)
6.2.3.1 A Compact-Disk-Like Microfluidic Platform for Enzyme-Linked Immunosorbent Assay
150(1)
6.2.3.2 Portable Low-Cost Immunoassay for Resource-Poor Settings
151(1)
6.3 Comparison between Biosensors and ELISA Immunoassays
151(2)
References
153(2)
Review Questions
155(2)
Chapter 7 Fabrication of BioMEMS Devices 157(46)
7.1 Basic Microfabrication Processes
157(9)
7.1.1 Introduction
157(1)
7.1.2 Thin-Film Deposition
158(4)
7.1.3 Photolithography
162(1)
7.1.4 Etching
163(1)
7.1.5 Substrate Bonding
164(2)
7.2 Micromachining
166(5)
7.2.1 Bulk Micromachining
166(3)
7.2.2 Surface Micromachining
169(1)
7.2.3 High-Aspect-Ratio Micromachining (LIGA Process)
170(1)
7.3 Soft Micromachining
171(8)
7.3.1 Introduction
171(1)
7.3.2 Molding and Hot Embossing
172(2)
7.3.3 Micro Contact Printing (µCP)
174(1)
7.3.4 Micro Transfer Molding (µTM)
175(1)
7.3.5 Micromolding in Capillaries
175(4)
7.4 Microfabrication Techniques for Biodegradable Polymers
179(3)
7.5 Nanofabrication Methods
182(17)
7.5.1 Laser Processing, Ablation, and Deposition
182(1)
7.5.2 High-Precision Milling
183(1)
7.5.3 Inductively Coupled Plasma (ICP) Reactive Ion Etching
184(1)
7.5.4 Electron Beam Lithography
185(1)
7.5.5 Dip Pen Nanolithography
185(2)
7.5.6 Nanosphere Lithography (Colloid Lithography)
187(1)
7.5.7 Surface Patterning by Microlenses
188(1)
7.5.8 Electrochemical Patterning
189(1)
7.5.9 Electric-Field-Assisted Nanopatterning
190(1)
7.5.10 Large-Area Nanoscale Patterning
190(2)
7.5.11 Selective Molecular Assembly Patterning (SMAP)
192(1)
7.5.12 Site-Selective Assemblies of Gold Nanoparticles on an AFM Tip-Defined Silicon Template
192(1)
7.5.13 Highly Ordered Metal Oxide Nanopatterns Prepared by Template-Assisted Chemical Solution Deposition
193(2)
7.5.14 Wetting-Driven Self-Assembly: A New Approach to Template-Guided Fabrication of Metal Nanopatterns
195(1)
7.5.15 Patterned Gold Films via Site-Selective Deposition of Nanoparticles onto Polymer-Templated Surfaces
195(2)
7.5.16 Nanopatterning by PDMS Relief Structures of Polymer Colloidal Crystals
197(2)
References
199(1)
Review Questions
200(3)
Chapter 8 Introduction to Microfluidics 203(42)
8.1 Introduction
203(1)
8.2 Fluid Physics at the Microscale
204(2)
8.3 Methods for Enhancing Diffusive Mixing between Two Laminar Flows
206(5)
8.4 Controlling Flow and Transport in Microfluidic Channels
211(13)
8.4.1 Physical Processes Underlying Electrokinetics in Electroosmosis Systems
214(3)
8.4.2 Droplet Actuation Based on Marangoni Flows
217(5)
8.4.3 Electrowetting
222(1)
8.4.4 Thermocapillary Pumping
223(1)
8.4.5 Surface Electrodeposition
223(1)
8.5 Modeling Microchannel Flow
224(10)
8.5.1 Introduction
224(5)
8.5.2 The Finite Element Method
229(1)
8.5.3 Simulation of Flow in Microfluidic Channels: Case Studies
229(5)
8.5.3.1 Case 1: Silicon Microfluidic Platform for Fluorescence-Based Biosensing
229(1)
8.5.3.2 Case 2: Numerical Simulation of Electroosmotic Flow in Hydrophobic Microchannels: Influence of Electrode's Position
229(3)
8.5.3.3 Case 3: Prediction of Intermittent Flow Microreactor System
232(1)
8.5.3.4 Case 4: Modeling of Electrowetting Flow
232(2)
8.6 Experimental Methods
234(7)
8.6.1 Flow Visualization at Microscale
234(1)
8.6.2 Fluorescent Imaging Method
235(2)
8.6.3 Particle Streak Velocimetry
237(1)
8.6.4 Particle Tracking Velocimetry
237(1)
8.6.5 Micro Particle Imaging Velocimetry (μPIV)
237(2)
8.6.6 Micro-Laser-Induced Fluorescence (μLIF) Method for Shape Measurements
239(2)
8.6.7 Caged and Bleached Fluorescence
241(1)
References
241(2)
Review Questions
243(2)
Chapter 9 BioMEMS: Life Science Applications 245(72)
9.1 Introduction to Microarrays
246(1)
9.2 Microarrays Based on DNA
247(4)
9.2.1 Introduction to DNA Chips
247(1)
9.2.2 Principles of DNA Microarray: The Design, Manufacturing, and Data Handling
247(3)
9.2.3 Applications of DNA Microarrays
250(1)
9.3 Polymerase Chain Reaction (PCR)
251(7)
9.3.1 Introduction
251(1)
9.3.2 PCR Process
251(6)
9.3.3 On-Chip Single-Copy Real-Time Reverse Transcription PCR in Isolated Picoliter Droplets: A Case Study
257(1)
9.4 Protein Microarrays
258(9)
9.4.1 Introduction
258(4)
9.4.2 Fabrication of Protein Microarrays
262(5)
9.4.3 Applications of Protein Arrays
267(1)
9.5 Cell and Tissue-Based Assays on a Chip
267(5)
9.6 Microreactors
272(16)
9.6.1 Introduction
272(1)
9.6.2 Microchannel Enzyme Reactors
273(1)
9.6.3 Enzymatic Conversions: Case Studies
274(9)
9.6.3.1 Glycosidase-Promoted Hydrolysis in Microchannels
274(3)
9.6.3.2 Lactose Hydrolysis by Hyperthermophilic I3-Glycoside Hydrolase with Immobilized Enzyme
277(1)
9.6.3.3 Photopatterning Enzymes inside Microfluidic Channels
277(3)
9.6.3.4 Integrated Microfabricated Device for an Automated Enzymatic Assay
280(1)
9.6.3.5 Silicon Microstructured Enzyme Reactor with Porous Silicon as the Carrier Matrix
280(1)
9.6.3.6 Enzymatic Reactions Using Droplet-Based Microfluidics
281(2)
9.6.4 Synthesis of Nanoparticles and Biomaterials in Microfluidic Devices
283(1)
9.6.5 Microfluidic Devices for Separation
283(12)
9.6.5.1 Separation of Blood Cells
285(1)
9.6.5.2 Cell or Particle Sorting
286(2)
9.7 Micro Total Analysis Systems (pTAS) and Lab-on-a-Chip (LOC)
288(7)
9.8 Lab-on-a-Chip: Conclusion and Outlook
295(1)
9.9 Microcanti lever BioMEMS
295(17)
9.9.1 Introduction
295(1)
9.9.2 Basic Principles of Sensing Biomechanical Interactions
296(5)
9.9.3 Detection Modes of Biomechanical Interactions
301(4)
9.9.3.1 Static Mode
301(2)
9.9.3.2 Dynamic Mode
303(2)
9.9.4 Location of Interaction in the Case of Mass-Dominant BioMEMS Devices
305(1)
9.9.5 Location of Interaction for Stress-Dominant BioMEMS Devices
305(2)
9.9.6 Fabrication and Functionalization of Microcantilevers
307(5)
9.9.6.1 Case 1: Detection of Interaction between ssDNA and the Thiol Group Using Cantilevers in the Static Mode
308(1)
9.9.6.2 Case 2: Specific Detection of Enzymatic Interactions in the Static Mode
308(3)
9.9.6.3 Case 3: Detection of Enzymatic Interactions in the Dynamic Mode
311(1)
References
312(3)
Review Questions
315(2)
Index 317
Muthukumaran Packirisamy is a professor and research chair on Optical BioMEMS in the Department of Mechanical and Industrial Engineering at Concordia University in Canada. He is the recipient of the I.W. Smith award and fellow from the Canadian Society for Mechanical Engineering, the award for Best Researcher of the University, and the PetroCanada Young Innovator Award. He was also a member of the Canadian TaskForce on MEMS and Microfluidics. His research interest includes optical bioMEMS, integration of micro systems, and micro-nano integration.





Dr. Simona Badilescu is a senior scientist with a background in physical chemistry and a rich experience in teaching and research. She received her Ph.D. degree from the University of Bucharest (Romania) and specialized in molecular spectroscopy, surface science, and analytical applications of infrared spectroscopy. Presently, her research interest includes nanomaterials and their sensing applications.