Atjaunināt sīkdatņu piekrišanu

E-grāmata: Biomolecular Sensors

Edited by (University of Cambridge, UK), Edited by (University of Cambridge, UK)
  • Formāts: 336 pages
  • Izdošanas datums: 16-May-2002
  • Izdevniecība: Taylor & Francis Ltd
  • ISBN-13: 9781135736132
  • Formāts - EPUB+DRM
  • Cena: 275,50 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 336 pages
  • Izdošanas datums: 16-May-2002
  • Izdevniecība: Taylor & Francis Ltd
  • ISBN-13: 9781135736132

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The development of devices that incorporate biological assemblies is impacting analytical and biomedical research. Today, scientists can monitor vital biological interactions-such as the binding of DNA to proteins-in real time, deriving unique information necessary to understanding biochemical pathways and thus aiding the design of drugs to regulate these processes. Biomolecular Sensors describes the development of this new technology covering the fundamental physics through to applications. The principles of biological recognition, immobilization techniques, and transducer technology are described in depth in order to provide the necessary background to readers from various disciplines. Focusing on the study of antigen-antibody, DNA-protein and receptor-ligand binding events, the book covers biological applications and describes the commercial instruments available to exploit this technology in areas as diverse as biological research, medical applications and environmental monitoring. With contributions from internationally recognized experts, this is the essential reference for advanced undergraduates and postgraduates as well as professionals in this rapidly advancing field.
Notes on contributors ix
Preface xi
Acknowledgements xiii
PART I Biological recognition 1(46)
Principles of antigen-antibody recognition
3(16)
M. H. V. Van Regenmortel
D. Altschuh
Introduction
3(1)
Structure of immunoglobulins
4(1)
Structure of paratopes
5(1)
Structure of epitopes
6(3)
Antigen-antibody interactions
9(4)
The specificity of immunological reagents
13(1)
Structure-function relationships in immunochemistry
14(1)
References
15(4)
Protein-protein interactions
19(14)
Gideon Schreiber
Characterization of protein-protein interfaces
19(4)
Double mutant cycle analysis of a protein-protein interface
23(2)
Mutational induced structural rearrangement in protein interfaces
25(1)
Kinetic pathway of protein-protein association
25(1)
The mechanism of association of a protein complex
26(1)
Measuring protein-protein interactions in homogeneous and heterogeneous phase
27(2)
Affinity versus activity
29(1)
Summary
29(1)
References
30(3)
DNA interactions
33(14)
Brian E. Cathers
Michael J. Waring
Analogue recognition
36(1)
Middle of the spectrum
37(2)
Digital recognition
39(3)
References
42(5)
PART II Immobilisation of biomolecules 47(74)
Immobilisation chemistry of biological recognition molecules
49(38)
Andrew G. Mayes
Introduction
49(1)
Creation of the molecular recognition interface on the transducer
49(1)
The transducer surface
50(10)
Adsorption to the transducer surface
60(1)
Entrapment methods
60(4)
Covalent coupling chemistry
64(10)
Techniques giving some control over the orientation of the immobilised antibody
74(4)
Spatial control of surface immobilisation
78(5)
Conclusion
83(1)
References
83(4)
Binding isotherms and kinetics of immobilized biological systems
87(34)
Claus Duschl
Introduction
87(2)
The determination of binding constants and of kinetic rate constants
89(29)
Conclusions
118(1)
References
118(3)
PART III Transducer technology 121(118)
Optical transducers
123(53)
Martha Liley
Introduction
123(1)
Optical transducers: general considerations
124(9)
Direct detection
133(25)
Fluorescence transducers
158(12)
Conclusions and outlook
170(2)
Acknowledgements
172(1)
References
172(4)
Acoustic transducers
176(31)
Electra Gizeli
Introduction
176(1)
Elastic waves in solids
176(4)
Acoustic wave devices
180(3)
Acoustic wave sensors for studying biomolecular interactions
183(17)
Comparison of acoustic sensors
200(2)
Conclusions
202(1)
Acknowledgements
202(1)
References
202(5)
Immunoassays using enzymatic amplification electrodes
207(32)
Frieder W. Scheller
Christian G. Bauer
Alexander Makower
Ulla Wollenberger
Axel Warsinke
Frank F. Bier
Introduction
207(1)
Coupling of immunoassays with enzymatic recycling electrodes
207(23)
Conclusions
230(2)
Acknowledgement
232(1)
References
232(7)
PART IV Applications 239(78)
Surface plasmon resonance: development and use of BIACORE instruments for biomolecular interaction analysis
241(28)
Bengt Ivarsson
Magnus Malmqvist
Introduction
241(3)
Application demands
244(1)
SPR-refractometer instrumental configurations
245(11)
Sensor surface chemistry
256(3)
Biomolecular interaction analysis-BIA
259(4)
Marketing
263(2)
References
265(4)
IAsys: the resonant mirror biosensor
269(22)
R.J. Davies
P.R. Edwards
Introduction
269(1)
Modus operandi--light and surfaces
269(2)
Developments in kinetics
271(3)
Recent applications
274(13)
Conclusions
287(1)
References
287(4)
Commercial quartz crystal microbalances: theory and applications
291(13)
C.K. O'Sullivan
G.G. Guilbault
Introduction
291(1)
Quartz crystal microbalance--theory
291(4)
Commercial systems
295(1)
Applications
295(4)
Conclusion and future directions
299(1)
Bibliography
300(4)
The quartz crystal microbalance with dissipation monitoring (QCM-D)
304(13)
Michael Rodahl
Patrik Dahlqvist
Fredrik Hook
Bengt Kasemo
Introduction
304(1)
The QCM beyond the Sauerbrey regime
305(2)
Application examples
307(1)
Example 1: DNA
307(2)
Example 2: Mussel adhesive protein
309(3)
Concluding remarks
312(1)
Appendix
313(1)
References
314(3)
Index 317


Electra Gizeli, Christopher R. Lowe