Atjaunināt sīkdatņu piekrišanu

E-grāmata: Biophysical Chemistry of Biointerfaces

(Tokyo University of Science, Japan)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 11-Jan-2011
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118057858
  • Formāts - EPUB+DRM
  • Cena: 168,88 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 11-Jan-2011
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118057858

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The first book on the innovative study of biointerfaces using biophysical chemistry The biophysical phenomena that occur on biointerfaces, or biological surfaces, hold a prominent place in the study of biology and medicine, and are crucial for research relating to implants, biosensors, drug delivery, proteomics, and many other important areas. Biophysical Chemistry of Biointerfaces takes the unique approach of studying biological systems in terms of the principles and methods of physics and chemistry, drawing its knowledge and experimental techniques from a wide variety of disciplines to offer new tools to better understand the intricate interactions of biointerfaces. Biophysical Chemistry of Biointerfaces:





Provides a detailed description of the thermodynamics and electrostatics of soft particles



Fully describes the biophysical chemistry of soft interfaces and surfaces (polymer-coated interfaces and surfaces) as a model for biointerfaces



Delivers many approximate analytic formulas which can be used to describe various interfacial phenomena and analyze experimental data



Offers detailed descriptions of cutting-edge topics such as the biophysical and interfacial chemistries of lipid membranes and gel surfaces, which serves as good model for biointerfaces in microbiology, hematology, and biotechnology





Biophysical Chemistry of Biointerfaces pairs sound methodology with fresh insight on an emerging science to serve as an information-rich reference for professional chemists as well as a source of inspiration for graduate and postdoctoral students looking to distinguish themselves in this challenging field.

Recenzijas

"Ohshima (pharmaceutical science, Tokyo U. of Science) sets out a set of tools for discussing various phenomena at biological interfaces - such as cell surfaces - in terms of biophysical chemistry." (SciTech Book News, December 2010)

Preface xiii
List of Symbols
xv
PART I POTENTIAL AND CHARGE AT INTERFACES
1(162)
1 Potential and Charge of a Hard Particle
3(44)
1.1 Introduction
3(1)
1.2 The Poisson-Boltzmann Equation
3(3)
1.3 Plate
6(10)
1.3.1 Low Potential
8(1)
1.3.2 Arbitrary Potential: Symmetrical Electrolyte
8(5)
1.3.3 Arbitrary Potential: Asymmetrical Electrolyte
13(1)
1.3.4 Arbitrary Potential: General Electrolyte
14(2)
1.4 Sphere
16(15)
1.4.1 Low Potential
17(1)
1.4.2 Surface Charge Density-Surface Potential Relationship: Symmetrical Electrolyte
18(3)
1.4.3 Surface Charge Density-Surface Potential Relationship: Asymmetrical Electrolyte
21(1)
1.4.4 Surface Charge Density-Surface Potential Relationship: General Electrolyte
22(3)
1.4.5 Potential Distribution Around a Sphere with Arbitrary Potential
25(6)
1.5 Cylinder
31(6)
1.5.1 Low Potential
32(1)
1.5.2 Arbitrary Potential: Symmetrical Electrolyte
33(1)
1.5.3 Arbitrary Potential: General Electrolytes
34(3)
1.6 Asymptotic Behavior of Potential and Effective Surface Potential
37(6)
1.6.1 Plate
38(3)
1.6.2 Sphere
41(1)
1.6.3 Cylinder
42(1)
1.7 Nearly Spherical Particle
43(2)
References
45(2)
2 Potential Distribution Around a Nonuniformly Charged Surface and Discrete Charge Effects
47(16)
2.1 Introduction
47(1)
2.2 The Poisson-Boltzmann Equation for a Surface with an Arbitrary Fixed Surface Charge Distribution
47(9)
2.3 Discrete Charge Effect
56(6)
References
62(1)
3 Modified Poisson-Boltzmann Equation
63(20)
3.1 Introduction
63(1)
3.2 Electrolyte Solution Containing Rod-like Divalent Cations
63(7)
3.3 Electrolyte Solution Containing Rod-like Zwitterions
70(7)
3.4 Self-atmosphere Potential of Ions
77(5)
References
82(1)
4 Potential and Charge of a Soft Particle
83(28)
4.1 Introduction
83(1)
4.2 Planar Soft Surface
83(10)
4.2.1 Poisson-Boltzmann Equation
83(4)
4.2.2 Potential Distribution Across a Surface Charge Layer
87(3)
4.2.3 Thick Surface Charge Layer and Donnan Potential
90(1)
4.2.4 Transition Between Donnan Potential and Surface Potential
91(1)
4.2.5 Donnan Potential in a General Electrolyte
92(1)
4.3 Spherical Soft Particle
93(7)
4.3.1 Low Charge Density Case
93(2)
4.3.2 Surface Potential-Donnan Potential Relationship
95(5)
4.4 Cylindrical Soft Particle
100(2)
4.4.1 Low Charge Density Case
100(1)
4.4.2 Surface Potential-Donnan Potential Relationship
101(1)
4.5 Asymptotic Behavior of Potential and Effective Surface Potential of a Soft Particle
102(2)
4.5.1 Plate
102(1)
4.5.2 Sphere
103(1)
4.5.3 Cylinder
104(1)
4.6 Nonuniformly Charged Surface Layer: Isoelectric Point
104(6)
References
110(1)
5 Free Energy of a Charged Surface
111(21)
5.1 Introduction
111(1)
5.2 Helmholtz Free Energy and Tension of a Hard Surface
111(7)
5.2.1 Charged Surface with Ion Adsorption
111(5)
5.2.2 Charged Surface with Dissociable Groups
116(2)
5.3 Calculation of the Free Energy of the Electrical Double Layer
118(4)
5.3.1 Plate
119(1)
5.3.2 Sphere
120(1)
5.3.3 Cylinder
121(1)
5.4 Alternative Expression for Fel
122(1)
5.5 Free Energy of a Soft Surface
123(7)
5.5.1 General Expression
123(4)
5.5.2 Expressions for the Double-Layer Free Energy for a Planar Soft Surface
127(1)
5.5.3 Soft Surface with Dissociable Groups
128(2)
References
130(2)
6 Potential Distribution Around a Charged Particle in a Salt-Free Medium
132(31)
6.1 Introduction
132(1)
6.2 Spherical Particle
133(10)
6.3 Cylindrical Particle
143(3)
6.4 Effects of a Small Amount of Added Salts
146(6)
6.5 Spherical Soft Particle
152(10)
References
162(1)
PART II INTERACTION BETWEEN SURFACES
163(268)
7 Electrostatic Interaction of Point Charges in an Inhomogeneous Medium
165(21)
7.1 Introduction
165(1)
7.2 Planar Geometry
166(14)
7.3 Cylindrical Geometry
180(5)
References
185(1)
8 Force and Potential Energy of the Double-Layer Interaction Between Two Charged Colloidal Particles
186(17)
8.1 Introduction
186(1)
8.2 Osmotic Pressure and Maxwell Stress
186(2)
8.3 Direct Calculation of Interaction Force
188(10)
8.4 Free Energy of Double-Layer Interaction
198(3)
8.4.1 Interaction at Constant Surface Charge Density
199(1)
8.4.2 Interaction at Constants Surface Potential
200(1)
8.5 Alternative Expression for the Electric Part of the Free Energy of Double-Layer Interaction
201(1)
8.6 Charge Regulation Model
201(1)
References
202(1)
9 Double-Layer Interaction Between Two Parallel Similar Plates
203(38)
9.1 Introduction
203(1)
9.2 Interaction Between Two Parallel Similar Plates
203(4)
9.3 Low Potential Case
207(7)
9.3.1 Interaction at Constant Surface Charge Density
208(3)
9.3.2 Interaction at Constant Surface Potential
211(3)
9.4 Arbitrary Potential Case
214(12)
9.4.1 Interaction at Constant Surface Charge Density
214(10)
9.4.2 Interaction at Constant Surface Potential
224(2)
9.5 Comparison Between the Theory of Derjaguin and Landau and the Theory of Verwey and Overbeek
226(1)
9.6 Approximate Analytic Expressions for Moderate Potentials
227(4)
9.7 Alternative Method of Linearization of the Poisson-Boltzmann Equation
231(9)
9.7.1 Interaction at Constant Surface Potential
231(3)
9.7.2 Interaction at Constant Surface Charge Density
234(6)
References
240(1)
10 Electrostatic Interaction Between Two Parallel Dissimilar Plates
241(24)
10.1 Introduction
241(1)
10.2 Interaction Between Two Parallel Dissimilar Plates
241(3)
10.3 Low Potential Case
244(8)
10.3.1 Interaction at Constant Surface Charge Density
244(7)
10.3.2 Interaction at Constant Surface Potential
251(1)
10.3.3 Mixed Case
252(1)
10.4 Arbitrary Potential: Interaction at Constant Surface Charge Density
252(10)
10.4.1 Isodynamic Curves
252(6)
10.4.2 Interaction Energy
258(4)
10.5 Approximate Analytic Expressions for Moderate Potentials
262(1)
References
263(2)
11 Linear Superposition Approximation for the Double-Layer Interaction of Particles at Large Separations
265(18)
11.1 Introduction
265(1)
11.2 Two Parallel Plates
265(13)
11.2.1 Similar Plates
265(5)
11.2.2 Dissimilar Plates
270(6)
11.2.3 Hypothetical Charge
276(2)
11.3 Two Spheres
278(1)
11.4 Two Cylinders
279(2)
References
281(2)
12 Derjaguin's Approximation at Small Separations
283(15)
12.1 Introduction
283(1)
12.2 Two Spheres
283(9)
12.2.1 Low Potentials
285(1)
12.2.2 Moderate Potentials
286(2)
12.2.3 Arbitrary Potentials: Derjaguin's Approximation Combined with the Linear Superposition Approximation
288(2)
12.2.4 Curvature Correction to Derjaguin' Approximation
290(2)
12.3 Two Parallel Cylinders
292(2)
12.4 Two Crossed Cylinders
294(3)
References
297(1)
13 Donnan Potential-Regulated Interaction Between Porous Particles
298(25)
13.1 Introduction
298(1)
13.2 Two Parallel Semi-infinite Ion-penetrable Membranes (Porous Plates)
298(8)
13.3 Two Porous Spheres
306(4)
13.4 Two Parallel Porous Cylinders
310(1)
13.5 Two Parallel Membranes with Arbitrary Potentials
311(9)
13.5.1 Interaction Force and Isodynamic Curves
311(6)
13.5.2 Interaction Energy
317(3)
13.6 pH Dependence of Electrostatic Interaction Between Ion-penetrable Membranes
320(2)
References
322(1)
14 Series Expansion Representations for the Double-Layer Interaction Between Two Particles
323(34)
14.1 Introduction
323(1)
14.2 Schwartz's Method
323(4)
14.3 Two Spheres
327(15)
14.4 Plate and Sphere
342(6)
14.5 Two Parallel Cylinders
348(5)
14.6 Plate and Cylinder
353(3)
References
356(1)
15 Electrostatic Interaction Between Soft Particles
357(18)
15.1 Introduction
357(1)
15.2 Interaction Between Two Parallel Dissimilar Soft Plates
357(6)
15.3 Interaction Between Two Dissimilar Soft Spheres
363(6)
15.4 Interaction Between Two Dissimilar Soft Cylinders
369(5)
References
374(1)
16 Electrostatic Interaction Between Nonuniformly Charged Membranes
375(6)
16.1 Introduction
375(1)
16.2 Basic Equations
375(1)
16.3 Interaction Force
376(2)
16.4 Isoelectric Points with Respect To Electrolyte Concentration
378(2)
Reference
380(1)
17 Electrostatic Repulsion Between Two Parallel Soft Plates After Their Contact
381(7)
17.1 Introduction
381(1)
17.2 Repulsion Between Intact Brushes
381(1)
17.3 Repulsion Between Compressed Brushes
382(5)
References
387(1)
18 Electrostatic Interaction Between Ion-Penetrable Membranes In a Salt-free Medium
388(11)
18.1 Introduction
388(1)
18.2 Two Parallel Hard Plates
388(3)
18.3 Two Parallel Ion-Penetrable Membranes
391(7)
References
398(1)
19 van der Waals Interaction Between Two Particles
399(21)
19.1 Introduction
399(1)
19.2 Two Molecules
399(2)
19.3 A Molecule and a Plate
401(1)
19.4 Two Parallel Plates
402(2)
19.5 A Molecule and a Sphere
404(1)
19.6 Two Spheres
405(2)
19.7 A Molecule and a Rod
407(1)
19.8 Two Parallel Rods
408(1)
19.9 A Molecule and a Cylinder
408(2)
19.10 Two Parallel Cylinders
410(2)
19.11 Two Crossed Cylinders
412(1)
19.12 Two Parallel Rings
412(1)
19.13 Two Parallel Torus-Shaped Particles
413(4)
19.14 Two Particles Immersed In a Medium
417(1)
19.15 Two Parallel Plates Covered with Surface Layers
418(1)
References
419(1)
20 DLVO Theory of Colloid Stability
420(11)
20.1 Introduction
420(1)
20.2 Interaction Between Lipid Bilayers
420(5)
20.3 Interaction Between Soft Spheres
425(4)
References
429(2)
PART III ELECTROKINETIC PHENOMENA AT INTERFACES
431(102)
21 Electrophoretic Mobility of Soft Particles
433(35)
21.1 Introduction
433(1)
21.2 Brief Summary of Electrophoresis of Hard Particles
433(2)
21.3 General Theory of Electrophoretic Mobility of Soft Particles
435(5)
21.4 Analytic Approximations for the Electrophoretic Mobility of Spherical Soft Particles
440(9)
21.4.1 Large Spherical Soft Particles
440(4)
21.4.2 Weakly Charged Spherical Soft Particles
444(3)
21.4.3 Cylindrical Soft Particles
447(2)
21.5 Electrokinetic Flow Between Two Parallel Soft Plates
449(5)
21.6 Soft Particle Analysis of the Electrophoretic Mobility of Biological Cells and Their Model Particles
454(3)
21.6.1 RAW117 Lymphosarcoma Cells and Their Variant Cells
454(1)
21.6.2 Poly(N-isopropylacrylamide) Hydrogel-Coated Latex
455(2)
21.7 Electrophoresis of Nonuniformly Charged Soft Particles
457(6)
21.8 Other Topics of Electrophoresis of Soft Particles
463(1)
References
464(4)
22 Electrophoretic Mobility of Concentrated Soft Particles
468(12)
22.1 Introduction
468(1)
22.2 Electrophoretic Mobility of Concentrated Soft Particles
468(7)
22.3 Electroosmotic Velocity in an Array of Soft Cylinders
475(4)
References
479(1)
23 Electrical Conductivity of a Suspension of Soft Particles
480(5)
23.1 Introduction
480(1)
23.2 Basic Equations
480(1)
23.3 Electrical Conductivity
481(3)
References
484(1)
24 Sedimentation Potential and Velocity in a Suspension of Soft Particles
485(12)
24.1 Introduction
485(1)
24.2 Basic Equations
485(5)
24.3 Sedimentation Velocity of a Soft Particle
490(1)
24.4 Average Electric Current and Potential
490(1)
24.5 Sedimentation Potential
491(3)
24.6 Onsager's Reciprocal Relation
494(1)
24.7 Diffusion Coefficient of a Soft Particle
495(1)
References
495(2)
25 Dynamic Electrophoretic Mobility of a Soft Particle
497(11)
25.1 Introduction
497(1)
25.2 Basic Equations
497(2)
25.3 Linearized Equations
499(2)
25.4 Equation of Motion of a Soft Particle
501(1)
25.5 General Mobility Expression
501(2)
25.6 Approximate Mobility Formula
503(3)
References
506(2)
26 Colloid Vibration Potential in a Suspension of Soft Particles
508(7)
26.1 Introduction
508(1)
26.2 Colloid Vibration Potential and Ion Vibration Potential
508(5)
References
513(2)
27 Effective Viscosity of a Suspension of Soft Particles
515(18)
27.1 Introduction
515(1)
27.2 Basic Equations
516(2)
27.3 Linearized Equations
518(2)
27.4 Electroviscous Coefficient
520(3)
27.5 Approximation for Low Fixed-Charge Densities
523(4)
27.6 Effective Viscosity of a Concentrated Suspension of Uncharged Porous Spheres
527(3)
Appendix 27A
530(1)
References
531(2)
PART IV OTHER TOPICS
533(10)
28 Membrane Potential and Donnan Potential
535(8)
28.1 Introduction
535(1)
28.2 Membrane Potential and Donnan Potential
535(6)
References
541(2)
Index 543
HIROYUKI OHSHIMA is Professor of Pharmaceutical Sciences at the Tokyo University of Science, Japan. He is the author or co-author of seven books and over 300 book chapters and journal publications reflecting his research interests in the colloid and interfacial sciences as well as biophysical chemistry. He is a member of the New York Academy of Sciences, American Chemical Society, the Physical Society of Japan, the Chemical Society of Japan, and the Pharmaceutical Society of Japan. Dr. Ohshima received the BS, MS, and PhD degrees in physics from the University of Tokyo, Japan. He currently edits two journals, Colloids and Surfaces B: Biointerfaces and Colloid and Polymer Science.