Atjaunināt sīkdatņu piekrišanu

E-grāmata: Biophysical Chemistry

, (University of Muenster, Biophysical Chemistry)
  • Formāts: 792 pages
  • Izdošanas datums: 02-Jan-2018
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781482252248
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 792 pages
  • Izdošanas datums: 02-Jan-2018
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781482252248
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Biophysical Chemistry explores the concepts of physical chemistry and molecular structure that underlie biochemical processes. Ideally suited for undergradate students and scientists with backgrounds in physics, chemistry or biology, it is also equally accessible to students and scientists in related fields as the book concisely describes the fundamental aspects of biophysical chemistry, and puts them into a biochemical context.

The book is organized in four parts, covering thermodynamics, kinetics, molecular structure and stability, and biophysical methods. Cross-references within and between these parts emphasize common themes and highlight recurrent principles. End of chapter problems illustrate the main points explored and their relevance for biochemistry, enabling students to apply their knowledge and to transfer it to laboratory projects.

Features:















Connects principles of physical chemistry to biochemistry





Emphasizes the role of organic reactions as tools for modification and manipulation of biomolecules





Includes a comprehensive section on the theory of modern biophysical methods and their applications

Recenzijas

"Biophysical Chemistry by Klostermeier and Rudolph is an excellent up-to-date addition to current text book resources covering biophysical theory and practice. The book is well-structured into four main parts on Thermodynamics, Kinetics, Molecular Structure and Stability, and finally Methods. It is understandable and easy to read. The figures are spectacular, and the equations are well defined. The index is thorough, and the last Appendix briefly summarises the mathematical concepts used in the book, although some mathematical training would be required to derive the steps to reach some of the resulting equations. It was particularly pleasing to see sections on X-ray Free Electron Lasers and on the use of lipidic cubic phase for the crystallisation of membrane proteins, since these cutting edge approaches are at the forefront of structural biology research. The layout of the book aids understanding by providing boxes which explain particular concepts and formalisms, while not interrupting the general flow. Overall the book is very comprehensive and will be appropriate as a companion and supplement to the first and second year courses in biophysics provided for our Molecular and Cellular Biochemistry undergraduates here at Oxford." Elspeth F. Garman, Professor of Molecular Biophysics, University of Oxford

"This is a superb book with something for everyone who works in any aspect of modern molecular biology. It integrates all major structural and biophysical techniques in a single volume describing them with sufficient rigor for serious physical scientists, but also provides sufficient clarity and practical examples such that those lacking interest or more formal training can still clearly appreciate what is going on. Every technique and most aspects of theory are beautifully illustrated with simple diagrams. The emphasis is on giving the user enough insight that they can decide whether a particular technique is what they need to solve their problem, with at the same time enough information to allow them to design sensible experiments. In one volume it replaces three or four of the books on my office shelf that have much less comprehensive coverage of such topics, and at the same time it is right up to date, for example in its descriptions of single molecule spectroscopy and imaging, and the recent developments in electron microscopy. It will also be a useful advanced teaching tool since each chapter ends with a series of questions that allow students to test their understanding. Im sure my laboratory will end up consulting it regularly." Peter Stockley, Professor of Biological Chemistry, University of Leeds, UK

"This book provides an excellent and consistent presentation of biochemistry, biophysics and structural methods for macromolecules. I particularly liked the didactic approach of the authors, going from the thermodynamics to kinetics and further to interactions and structure to arrive at a complete picture. This book offers both comprehensive theoretical coverage and nice guides to practical problems solving." Dmitri I. Svergun, Group Leader and Senior Scientist, European Molecular Biology Laboratory, Hamburg Unit

"In these busy times with all the excitement about elaborate techniques that directly visualize cellular processes, the underlying knowledge that is necessary to truly understand these processes, and the techniques that are applied to gain this knowledge, is often neglected or covered rather incompletely. The textbook by Klostermeier and Rudolph seems to be a remedy to this problem since it manages in an impressive way to bridge elementary principles of biophysical chemistry and structural biology, and descriptions of modern techniques. I also find the style of the book very pleasing since it is a perfect synthesis of traditional textbook style, that is simply necessary in this field, and modern graphical annotations including the "box-principle" where important side-themes are summarized and presented optimally. Im convinced that this textbook will manage to sooth the common fear of biophysical chemistry, and allow students and researchers from other fields to swiftly master these important topics." Jochen Reinstein (Priv. Doz., Dr. rer. nat.), Max-Planck-Institute for Medical Research

"The book Biophysical Chemistry will be a must-have for students and lecturers in a broad field of Biochemistry, Biophysics, Biology and of course Biophysical chemistry. It is very clearly and precisely written presenting the fundamentals of thermodynamics and kinetics, before focusing on the structure and stability of biomolecules. In addition, an up to date presentation of the most important biophysical techniques used to study macromolecules is given. Each chapter is followed by questions to allow students (but also teachers) to reflect critically the subject leading to deeper understanding of the main text. In summary: a first class and immensely useful textbook, indispensable for students but also for scientists in the field." Hans-Joachim Galla, Professor Emeritus, Institute for Biochemistry, University of Muenster

Preface xvii
Acknowledgments xix
Authors xxi
Part I Thermodynamics
Chapter 1 Systems and their Surroundings
3(2)
Questions
4(1)
Chapter 2 State Functions and the Laws of Thermodynamics
5(62)
2.1 General Considerations: State Variables and State Functions
5(2)
2.2 The Internal Energy U and the First Law of Thermodynamics
7(19)
2.2.1 Internal Energy, Heat, and Work
7(1)
2.2.2 The First Law of Thermodynamics
8(1)
2.2.3 The Ideal Gas: A Convenient System to Understand Thermodynamic Principles
9(3)
2.2.4 Changes in the State of an Ideal Gas
12(8)
2.2.4.1 Irreversible Isothermal Expansion and Compression
12(1)
2.2.4.2 Reversible Isothermal Expansion and Compression
13(1)
2.2.4.3 Comparison of Reversible and Irreversible Changes of State
14(2)
2.2.4.4 Adiabatic Expansion and Compression
16(4)
2.2.5 Thermodynamic Cycles: Back and Forth or Round and Round
20(5)
2.2.5.1 The Carnot Process
21(4)
2.2.6 The Temperature Dependence of the Internal Energy U
25(1)
2.3 The Enthalpy H
26(3)
2.4 The Entropy S and the Second Law of Thermodynamics
29(8)
2.4.1 Predicting Spontaneity of Processes: Dissipation of Heat and Matter
29(1)
2.4.2 Entropy and Heat
30(2)
2.4.3 Temperature Dependence of the Entropy
32(1)
2.4.4 The Third Law of Thermodynamics and Absolute Entropy
33(1)
2.4.5 Entropy and Order: The Statistic Interpretation
34(3)
2.5 The Free Energy G: Combining System and Surroundings
37(9)
2.5.1 Entropy- and Enthalpy-Driven Reactions
39(2)
2.5.2 Pressure and Temperature Dependence of the Free Energy
41(2)
2.5.3 Standard States
43(1)
2.5.4 Relation of Free Energy, Enthalpy, and Entropy to Molecular Properties
44(2)
2.6 The Chemical Potential p
46(18)
2.6.1 The Chemical Potential as a Driving Force for Chemical Reactions
46(2)
2.6.2 The Chemical Potential and Stable States: Phase Diagrams
48(3)
2.6.3 Pressure and Temperature Dependence of the Chemical Potential
51(1)
2.6.4 The Chemical Potential as a Partial Molar Property
51(1)
2.6.5 The Chemical Potential of Compounds in Mixtures
52(3)
2.6.6 The Chemical Potential of Solutions
55(2)
2.6.7 Colligative Properties
57(7)
Questions
64(1)
References
65(2)
Chapter 3 Energetics and Chemical Equilibria
67(18)
3.1 The Free Energy Change and the Equilibrium Constant
67(4)
3.1.1 Temperature Dependence of the Equilibrium Constant
69(1)
3.1.2 The Principle of Le Chatelier
70(1)
3.2 Binding and Dissociation Equilibria and Affinity
71(3)
3.3 Protolysis Equilibria: The Dissociation of Acids and Bases in Water
74(1)
3.4 Thermodynamic Cycles, Linked Functions and Apparent Equilibrium Constants
75(7)
Questions
82(1)
References
83(2)
Chapter 4 Thermodynamics of Transport Processes
85(16)
4.1 Diffusion
85(5)
4.2 The Chemiosmotic Hypothesis
90(2)
4.3 Active and Passive Transport
92(2)
4.4 Directed Movement by the Brownian Ratchet
94(4)
Questions
98(1)
References
98(3)
Chapter 5 Electrochemistry
101(18)
5.1 Redox Reactions and Electrochemical Cells
101(3)
5.2 Types of Half-Cells
104(1)
5.3 Standard Electrode Potentials
105(1)
5.4 The Nernst Equation
106(2)
5.5 Measuring pH values
108(1)
5.6 Redox Reactions in Biology
109(2)
5.6.1 The Respiratory Chain
109(1)
5.6.2 The Light Reaction in Photosynthesis
110(1)
5.7 The Electrochemical Potential and Membrane Potentials
111(3)
5.8 Electrophysiology: Patch-Clamp Methods to Measure Ion Flux through Ion Channels
114(1)
Questions
115(1)
References
116(3)
Part II Kinetics
Chapter 6 Reaction Velocities and Rate Laws
119(6)
Questions
123(2)
Chapter 7 Integrated Rate Laws for Uni- and Bimolecular Reactions
125(12)
Questions
135(2)
Chapter 8 Reaction Types
137(10)
8.1 Reversible Reactions
137(3)
8.2 Parallel Reactions
140(2)
8.3 Consecutive Reactions
142(4)
Questions
146(1)
Reference
146(1)
Chapter 9 Rate-Limiting Steps
147(6)
Questions
151(1)
References
151(2)
Chapter 10 Binding Reactions: One-Step and Two-Step Binding
153(8)
Questions
159(1)
References
159(2)
Chapter 11 Steady-State (Enzyme) Kinetics
161(30)
11.1 Rapid Equilibrium (Michaelis-Menten Formalism)
162(2)
11.2 Steady-State Approximation (Briggs-Haldane Formalism)
164(3)
11.3 pH Dependence
167(5)
11.4 Two or More Non-Interacting Active Sites
172(3)
11.5 Two or More Interacting Active Sites: Cooperativity and the Hill Equation
175(4)
11.6 Inhibition of Enzyme Activity
179(8)
11.6.1 Product Inhibition in Reversible Reactions
179(3)
11.6.2 Competitive Inhibition
182(1)
11.6.3 Non-Competitive Inhibition
183(2)
11.6.4 Mixed Inhibition
185(2)
Questions
187(2)
References
189(2)
Chapter 12 Complex Reaction Schemes and their Analysis
191(12)
12.1 Binding of Two Substrates
191(5)
12.1.1 Random Binding
191(2)
12.1.2 Ordered Binding
193(3)
12.2 Ping-Pong Mechanism
196(1)
12.3 Net Rate Constants and Transit Times
197(3)
Questions
200(1)
References
200(3)
Chapter 13 Temperature Dependence of Rate Constants
203(6)
13.1 The Arrhenius Equation
203(1)
13.2 Transition State Theory
203(3)
13.3 Collision Theory
206(1)
13.4 Kinetic and Thermodynamic Control of Reactions
207(1)
Questions
208(1)
Chapter 14 Principles of Catalysis
209(12)
14.1 Enzyme Catalysis
209(2)
14.2 Acid-Base Catalysis
211(4)
14.3 Electrostatic and Covalent Catalysis
215(1)
14.4 Intramolecular Catalysis and Effective Concentrations
216(1)
Questions
216(1)
References
217(4)
Part III Molecular Structure and Stability
Chapter 15 Molecular Structure and Interactions
221(18)
15.1 Configuration and Conformation
221(3)
15.2 Covalent Interactions
224(3)
15.2.1 Covalent Bonds
225(1)
15.2.2 Bond Angles and Torsion Angles
225(2)
15.3 Non-Covalent Interactions
227(10)
15.3.1 Ionic Interactions
229(1)
15.3.2 Interactions between Ions and Dipoles
229(3)
15.3.3 Hydrogen Bonds
232(2)
15.3.4 Interactions between Induced Dipoles: van der Waals Interactions
234(3)
Questions
237(1)
References
237(2)
Chapter 16 Proteins
239(64)
16.1 Amino Acids and the Peptide Bond
239(12)
16.1.1 Properties of the Twenty Canonical Amino Acids
239(2)
16.1.2 The Peptide Bond
241(2)
16.1.3 Side-Chain Rotamers
243(1)
16.1.4 Post-Translational Modifications
244(7)
16.1.4.1 Glycosylation
245(1)
16.1.4.2 Phosphorylation
245(1)
16.1.4.3 Hydroxylation
246(1)
16.1.4.4 Carboxylation
247(1)
16.1.4.5 Disulfide Bonds
248(1)
16.1.4.6 Metal Binding
248(3)
16.2 Protein Structure
251(28)
16.2.1 Helical Secondary Structure Elements
253(4)
16.2.1.1 alpha-helix
253(2)
16.2.1.2 310-, poly-Pro, and Collagen Helices
255(2)
16.2.2 p-Strands and their Super-Secondary Structures (p-Sheets)
257(3)
16.2.3 Reverse Turns
260(2)
16.2.4 Protein Domains & Tertiary Structure
262(3)
16.2.5 Quaternary Structure & Protein-Protein Interactions
265(3)
16.2.5.1 Homo-Oligomers
265(2)
16.2.5.2 Hetero-Oligomers
267(1)
16.2.6 Protein-Protein Interactions
268(3)
16.2.6.1 Surface Complementarity and Buried Surface Area
268(1)
16.2.6.2 Energetics of Macromolecular Interactions
269(1)
16.2.6.3 Role of Water - The Hydrophobic Effect
269(2)
16.2.7 Protein-Ligand Interactions
271(2)
16.2.8 Membrane Proteins and their Lipid Environment
273(6)
16.2.8.1 Biological Roles of Lipids and Membranes
273(2)
16.2.8.2 Types of Lipids
275(1)
16.2.8.3 Super-Structures Formed by Lipids and Detergents
275(2)
16.2.8.4 Properties and Structure of Membrane Proteins
277(2)
16.3 Folding and Stability
279(20)
16.3.1 Driving Forces for Protein Folding
280(2)
16.3.2 First Folding Experiments and the Levinthal Paradox
282(1)
16.3.3 Energy Landscapes for Protein Folding
283(2)
16.3.4 Mathematical Description of the Two-State Model
285(5)
16.3.5 Folding Pathways and Mechanisms of Protein Folding
290(7)
16.3.5.1 Fast Steps in Protein Folding: Secondary Structure Formation
292(1)
16.3.5.2 Rate-Limiting Steps and Protein Folding In Vivo
293(2)
16.3.5.3 Kinetics of Protein Folding
295(1)
16.3.5.4 Folding Intermediates in Monomers and Oligomers
296(1)
16.3.6 Protein Folding Diseases
297(2)
Questions
299(1)
References
300(2)
Online Resources
302(1)
Chapter 17 Nucleic Acids
303(38)
17.1 Nucleobases, Nucleosides and Nucleotides
304(3)
17.1.1 Non-Standard Nucleobases in DNA
305(1)
17.1.2 Non-Standard Nucleobases in RNA
306(1)
17.2 Ribose and Nucleobase Conformations
307(2)
17.2.1 Sugar Pucker
307(1)
17.2.2 Syn- and Anti-Conformations
308(1)
17.3 Primary Structure of Nucleic Acids
309(2)
17.4 Base Pairing and Stacking
311(4)
17.4.1 H-bonds between Nucleobases
311(2)
17.4.2 Importance of Base Pair Stacking for Double Helix Formation
313(1)
17.4.3 Base Pair Geometries
314(1)
17.5 DNA Structures and Conformations
315(19)
17.5.1 DNA Double Helical Structures
315(3)
17.5.2 Triple and Quadruple DNA Helices
318(2)
17.5.2.1 Triplexes
318(1)
17.5.2.2 Quadruplexes and Telomeres
319(1)
17.5.3 Higher Order DNA Structures
320(9)
17.5.3.1 Helix Junctions
320(2)
17.5.3.2 DNA Supercoiling
322(6)
17.5.3.3 DNA Bending and Kinking
328(1)
17.5.4 DNA Interactions with Proteins and Ligands
329(5)
17.5.4.1 DNA Recognition by Proteins
329(4)
17.5.4.2 Small Molecule Binding to DNA
333(1)
17.6 RNA Structure
334(4)
17.6.1 RNA Secondary Structure
335(1)
17.6.2 RNA Tertiary Structure
336(2)
17.6.3 RNA Folding
338(1)
Questions
338(1)
References
339(1)
Online Resources
340(1)
Chapter 18 Computational Biology
341(24)
18.1 Sequence Analysis
341(7)
18.1.1 Sequence Composition, Global Properties, and Motifs
341(4)
18.1.1.1 DNA Sequences
342(1)
18.1.1.2 RNA Secondary Structure Prediction
342(1)
18.1.1.3 Protein Sequence Composition and Properties
343(2)
18.1.2 Sequence Alignment
345(3)
18.1.3 Secondary Structure Prediction
348(1)
18.2 Molecular Modeling
348(11)
18.2.1 Force Fields
349(1)
18.2.2 Energy Minimization
350(2)
18.2.3 Molecular Mechanics and Dynamics
352(4)
18.2.3.1 Boundary Conditions and Solvation
353(1)
18.2.3.2 Integration of the Newtonian Equations
354(1)
18.2.3.3 Trajectory Analysis
355(1)
18.2.4 Applications of Molecular Modeling to Macromolecules
356(9)
18.2.4.1 Fold Recognition
357(1)
18.2.4.2 Homology Modeling
358(1)
18.2.4.3 Simulated Annealing
358(1)
18.2.4.4 Coarse-Grained Modeling
359(1)
Questions
359(1)
References
360(1)
Online resources
360(5)
Part IV Methods
Chapter 19 Optical Spectroscopy
365(96)
19.1 Interaction of Light and Matter
365(4)
19.1.1 Light as an Electromagnetic Wave
365(2)
19.1.2 Principles of Spectroscopy: Transitions in Two-State Systems
367(2)
19.2 Absorption
369(18)
19.2.1 Electronic, Vibronic, and Rotational Energy Levels
369(1)
19.2.2 Transitions and Transition Dipoles
370(2)
19.2.3 The Lambert-Beer Law
372(2)
19.2.4 Solvent Effects and Influence of the Local Environment
374(1)
19.2.5 Instrumentation
375(1)
19.2.6 Biological Chromophores
375(5)
19.2.7 Applications
380(6)
19.2.7.1 Concentration Determination
380(1)
19.2.7.2 Spectroscopic Assays for Enzymatic Activity
381(2)
19.2.7.3 Spectroscopic Tests for Functional Groups
383(1)
19.2.7.4 Absorption as a Probe for Structural Changes
384(2)
19.2.8 Potential Pitfalls
386(1)
19.3 Linear and Circular Dichroism
387(11)
19.3.1 Linearly Polarized Light and Linear Dichroism
387(3)
19.3.2 Circularly Polarized Light and Circular Dichroism
390(5)
19.3.3 Instrumentation
395(1)
19.3.4 Biological Chromophores that Show Circular Dichroism
395(1)
19.3.5 Applications
396(2)
19.3.6 Potential Pitfalls
398(1)
19.4 Infrared Spectroscopy
398(6)
19.4.1 Bond Vibrations: The Harmonic Oscillator
398(2)
19.4.2 Molecule Geometry, Degrees of Freedom, and Vibrational Modes
400(2)
19.4.3 Instrumentation
402(1)
19.4.4 Applications
403(1)
19.5 Fluorescence
404(49)
19.5.1 General Considerations
404(2)
19.5.2 Instrumentation
406(1)
19.5.3 Quantum Yield and Lifetime
407(1)
19.5.4 Fluorophores and Fluorescent Labeling
408(10)
19.5.4.1 Biological Fluorophores
408(1)
19.5.4.2 Extrinsic Fluorophores and their Introduction into Proteins, Nucleic Acids, and Lipids
409(9)
19.5.5 Applications
418(6)
19.5.5.1 Fluorescence as a Probe for Binding: Equilibrium Titrations
418(4)
19.5.5.2 Fluorescence as a Probe for the Chemical Micro- and Macro-Environment
422(1)
19.5.5.3 Fluorescence and Imaging: Fluorescence Recovery after Photobleaching
423(1)
19.5.6 Potential Pitfalls
424(2)
19.5.7 Fluorescence Quenching
426(3)
19.5.8 Fluorescence Anisotropy
429(4)
19.5.8.1 Principle of Fluorescence Anisotropy
429(2)
19.5.8.2 Applications
431(1)
19.5.8.3 Potential Pitfalls of Polarization/Anisotropy Measurements
432(1)
19.5.9 Time-Resolved Fluorescence
433(8)
19.5.9.1 Measurement of Fluorescence Lifetimes
435(3)
19.5.9.2 Fluorescence Anisotropy Decays and Rotational Correlation Times
438(1)
19.5.9.3 Rotational Correlation Time and Molecular Size
439(1)
19.5.9.4 Applications
440(1)
19.5.10 Forster Resonance Energy Transfer
441(20)
19.5.10.1 Principle of FRET
441(2)
19.5.10.2 Experimental Determination of FRET Efficiencies
443(3)
19.5.10.3 Applications
446(3)
19.5.10.4 Potential Pitfalls
449(1)
19.5.10.5 FRET Efficiencies from Lifetimes
449(3)
19.5.10.6 FRET Efficiencies from Single Molecules
452(1)
Questions
453(2)
References
455(6)
Chapter 20 Magnetic Resonance
461(46)
20.1 Nuclear Magnetic Resonance
461(29)
20.1.1 Nuclear Spins and the Zeeman Effect
461(2)
20.1.2 A One-Dimensional NMR Spectrum: Larmor Frequency, Chemical Shift, J-Coupling, and Multiplicity
463(5)
20.1.2.1 The Larmor Frequency
463(1)
20.1.2.2 The Local Magnetic Field and the Chemical Shift
463(3)
20.1.2.3 Scalar Coupling and Multiplets
466(1)
20.1.2.4 Shape of NMR Lines
467(1)
20.1.2.5 Instrumentation
468(1)
20.1.3 The Nuclear Overhauser Effect: Distance Information
468(4)
20.1.4 Magnetization and Its Relaxation to Equilibrium: Fourier Transform-NMR and the Free Induction Decay
472(4)
20.1.5 Two-Dimensional FT-NMR: COSY and NOESY
476(8)
20.1.5.1 Principle of a 2D-FT-NMR Experiment
477(1)
20.1.5.2 Correlated Spectroscopy
478(1)
20.1.5.3 Nuclear Overhauser Enhancement Spectroscopy
479(1)
20.1.5.4 Spin Systems and Sequential Assignment of Protein NMR Spectra
479(4)
20.1.5.5 Structure Calculation
483(1)
20.1.6 Extending NMR to Structure Determination of Large Molecules
484(2)
20.1.7 NMR and Dynamics
486(2)
20.1.8 Solid State NMR and Biology
488(1)
20.1.9 NMR and Imaging
489(1)
20.2 Electron Paramagnetic Resonance
490(10)
20.2.1 Principle of Electron Paramagnetic Resonance
490(1)
20.2.2 Spin-Spin Interactions: Hyperfine Coupling of Unpaired Electrons with Nuclei
491(1)
20.2.3 EPR Probes and Spin Labeling
492(2)
20.2.4 EPR as a Probe for Mobility and Dynamics
494(1)
20.2.5 EPR as a Probe for Accessibility
495(1)
20.2.6 Measuring Spin-Spin Distances
496(1)
20.2.7 Distance Determination by Pulsed EPR: PELDOR/DEER
497(3)
Questions
500(1)
References
501(6)
Chapter 21 Solution Scattering
507(24)
21.1 Light Scattering
507(8)
21.1.1 Static Light Scattering
507(4)
21.1.2 Dynamic Light Scattering
511(2)
21.1.3 Raman Scattering
513(2)
21.2 Small Angle Scattering
515(13)
21.2.1 Scattering of X-rays and Neutrons
515(3)
21.2.2 SAS Intensity Distribution
518(4)
21.2.3 Distance Distribution Function
522(1)
21.2.4 Small Angle X-ray Scattering
523(3)
21.2.4.1 SAXS Experiment
523(1)
21.2.4.2 Excluded Volume and Molecular Mass
524(1)
21.2.4.3 Kratky Plot
524(1)
21.2.4.4 Modeling of Scattering Curves
525(1)
21.2.5 Small Angle Neutron Scattering
526(28)
21.2.5.1 Generation of Neutrons
526(1)
21.2.5.2 Contrast Variation
527(1)
Questions
528(1)
References
529(2)
Chapter 22 X-ray Crystallography
531(40)
22.1 Generation of X-rays
532(4)
22.2 Phase Problem and Requirement for Crystals
536(1)
22.3 Crystallization of Macromolecules
536(6)
22.4 Symmetry and Space Groups
542(5)
22.5 X-ray Diffraction from Crystals
547(4)
22.6 Diffraction Data Collection and Analysis
551(3)
22.7 Phasing Methods
554(8)
22.7.1 Isomorphous Replacement
554(2)
22.7.2 Anomalous Diffraction
556(4)
22.7.3 Molecular Replacement
560(2)
22.8 Electron Density and Model Building
562(3)
22.9 Model Refinement and Validation
565(3)
Questions
568(1)
References
569(1)
Online Resources
570(1)
Chapter 23 Imaging and Microscopy
571(52)
23.1 Fluorescence Microscopy
571(37)
23.1.1 Optical Principles of Microscopy
572(6)
23.1.1.1 Focusing and Collecting Light by Optical Lenses
572(2)
23.1.1.2 Microscopes: How to Achieve Magnification with Optical Lenses
574(2)
23.1.1.3 The Diffraction Limit of Optical Resolution
576(2)
23.1.2 Wide-Field Fluorescence Microscopy
578(1)
23.1.3 Confocal Scanning Microscopy
579(2)
23.1.4 Total Internal Reflection Microscopy
581(2)
23.1.5 Fluorescence Lifetime Imaging Microscopy
583(1)
23.1.6 Fluorescence (Cross-)Correlation Spectroscopy
584(8)
23.1.6.1 Fluorescence Correlation Spectroscopy
585(2)
23.1.6.2 FCS to Monitor Binding Events
587(3)
23.1.6.3 Fluorescence Cross-Correlation Spectroscopy
590(2)
23.1.7 Single-Molecule Fluorescence Microscopy
592(13)
23.1.7.1 Principles of Single-Molecule Microscopy
592(3)
23.1.7.2 Why Single Molecules?
595(1)
23.1.7.3 Localization and Tracking of Single Molecules
596(1)
23.1.7.4 Kinetic Information from Single-Molecule Microscopy
597(1)
23.1.7.5 Colocalization of Molecules
598(2)
23.1.7.6 Single-Molecule FRET
600(5)
23.1.8 Super-Resolution Microscopy
605(3)
23.2 Electron Microscopy
608(10)
23.2.1 Principle of Electron Microscopy
608(1)
23.2.2 Sample Preparation
609(1)
23.2.3 Image Generation and Analysis
610(1)
23.2.4 Three-Dimensional Electron Microscopy: Cryo-Electron Tomography and Single Particle Cryo-EM
611(6)
23.2.5 Scanning Probe Microscopy: Scanning Tunneling, Scanning Force, and Atomic Force Microscopy
617(1)
Questions
618(1)
References
619(4)
Chapter 24 Force Measurements
623(24)
24.1 Force Spectroscopy by AFM
625(6)
24.2 Optical Tweezers
631(7)
24.3 Magnetic Tweezers
638(4)
Questions
642(1)
References
642(5)
Chapter 25 Transient Kinetic Methods
647(10)
25.1 Stopped Flow
647(3)
25.2 Quench Flow
650(1)
25.3 Laser Flash Photolysis
651(2)
25.4 Relaxation Kinetics: Pressure- and Temperature-Jump
653(1)
Questions
654(1)
References
655(2)
Chapter 26 Molecular Mass, Size, and Shape
657(52)
26.1 Mass Spectrometry
657(19)
26.1.1 Ionization
658(2)
26.1.1.1 Matrix-Assisted Laser Desorption Ionization
658(1)
26.1.1.2 Electrospray Ionization
659(1)
26.1.2 Ion Storage and Manipulation
660(7)
26.1.2.1 Time of Flight Analysis
660(1)
26.1.2.2 Quadrupoles and Ion Traps
661(3)
26.1.2.3 Orbitraps
664(1)
26.1.2.4 Ion Fragmentation and Sequencing
665(2)
26.1.3 Detection
667(2)
26.1.4 Mass Spectra
669(1)
26.1.5 Applications
669(7)
26.1.5.1 Mass Analysis for the Identification of Molecules
669(1)
26.1.5.2 Isotope Distribution and Isotope Exchange
670(1)
26.1.5.3 Protein Identification from One- and Two-Dimensional Gels
671(1)
26.1.5.4 Native Mass Spectrometry
671(1)
26.1.5.5 Ion Mobility and Molecular Shape
672(1)
26.1.5.6 Identifying Protein-RNA Interaction Sites after Photo-Crosslinking
673(1)
26.1.5.7 Secondary Ion Mass Spectrometry
673(1)
26.1.5.8 Quantitative Mass Spectrometry
674(2)
26.2 Analytical Ultracentrifugation
676(17)
26.2.1 Instrumentation and Detection Systems
676(2)
26.2.2 Behavior of a Molecule in a Gravitational Field
678(4)
26.2.3 Sedimentation Velocity
682(5)
26.2.3.1 Determination of Sedimentation Coefficients
683(1)
26.2.3.2 Solvent and Concentration Dependence of the Sedimentation Coefficient
684(1)
26.2.3.3 Measuring Polydispersity and Association
685(2)
26.2.4 Sedimentation Equilibrium
687(3)
26.2.4.1 Determination of Molecular Mass Using Sedimentation Equilibrium
687(2)
26.2.4.2 Association in Sedimentation Equilibrium
689(1)
26.2.5 Zonal, Band, or Isopycnic Centrifugation
690(3)
26.3 Surface Plasmon Resonance
693(9)
26.3.1 Physical Background of SPR
693(2)
26.3.2 Principle and Information Content of an SPR Experiment
695(2)
26.3.3 Mass Transport Limitation
697(1)
26.3.4 Receptor Immobilization on the Sensor Surface
697(4)
26.3.4.1 Covalent Receptor Immobilization
698(2)
26.3.4.2 Non-Covalent Receptor Immobilization
700(1)
26.3.5 Stoichiometry of Binding in an SPR Experiment
701(1)
26.3.6 Specificity of Binding in an SPR Experiment
702(1)
Questions
702(4)
References
706(1)
Online resources
707(2)
Chapter 27 Calorimetry
709(22)
27.1 Isothermal Titration Calorimetry
709(11)
27.1.1 General Principle
709(2)
27.1.2 ITC Data Analysis
711(2)
27.1.3 Origin of Enthalpic Changes
713(2)
27.1.4 Practical Considerations
715(2)
27.1.5 Measuring High Affinities with ITC by Competition
717(1)
27.1.6 Measuring Michaelis-Menten Enzyme Kinetics with ITC
717(3)
27.2 Differential Scanning Calorimetry
720(6)
27.2.1 General Principle
720(3)
27.2.2 Two-State Unfolding of Macromolecules
723(2)
27.2.3 Two-State Unfolding with Subunit Dissociation
725(1)
Questions
726(1)
References
726(5)
Appendix
Chapter 28 Prefixes, Units, Constants
731(4)
28.1 Prefixes
731(1)
28.2 SI (Systeme International) or Base Units
732(1)
28.3 Derived Units Used in this Book
732(1)
28.4 Natural Constants Used in This Book
733(2)
Chapter 29 Mathematical Concepts Used in This Book
735(20)
29.1 Sums and Products
735(1)
29.2 Quadratic Equation
736(1)
29.3 Binomial Coefficients
736(1)
29.4 Trigonometry
737(1)
29.5 Logarithms and Exponentials
737(2)
29.6 Differentiation and Integration
739(3)
29.7 Partial fractions
742(1)
29.8 l'Hopital's rule
743(1)
29.9 Vectors
743(2)
29.9.1 Dot Product
744(1)
29.9.2 Cross Product
744(1)
29.10 Complex Numbers
745(2)
29.11 Basic Elements of Statistics
747(1)
29.12 Error Propagation
748(1)
29.13 Series Expansion
749(2)
29.13.1 Taylor Series
749(1)
29.13.2 Fourier Series
749(2)
29.14 Fourier Transformation
751(2)
29.15 Convolution
753(2)
Index 755
Dagmar Klostermeier is of the University of Muenster, Germany. 



Markus G. Rudolph is of the Pharma Research & Early Development Division in the Roche Group, Switzerland.