Atjaunināt sīkdatņu piekrišanu

E-grāmata: Biophysics of RNA-Protein Interactions: A Mechanistic View

Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 165,96 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

RNA molecules play key roles in all aspects of cellular life, but to do so efficiently, they must work in synergism with proteins. This book addresses how proteins and RNA interact to carry out biological functions such as protein synthesis, regulation of gene expression, genome defense, liquid phase separation and more.

The topics addressed in this volume will appeal to researchers in biophysics, biochemistry and structural biology. The book is a useful resource for anybody interested in elucidating the molecular mechanisms and discrete properties of RNA-protein complexes. Included are reviews of key systems such as microRNA and CRISPR/Cas that exemplify how RNA and proteins work together to perform their biological function. Also covered are techniques ranging from single molecule fluorescence and force spectroscopy to crystallography, cryo-EM microscopy, and kinetic modeling.


Part I RNA Binding Proteins
1 How Proteins Recognize RNA
3(20)
Rajan Lamichhane
1.1 Introduction
3(5)
1.2 RNA-Binding Proteins Are Modular
8(1)
1.3 Single-Stranded RNA Recognition
9(4)
1.4 Double-Stranded RNA Recognition
13(2)
1.5 SAM-Binding Domain
15(1)
1.6 Protein-RNA Interactions in the Ribosome
15(1)
1.7 Conclusions
16(1)
References
16(7)
2 The Interaction Between L7Ae Family of Proteins and RNA Kink Turns
23(16)
Lin Huang
David M. J. Lilley
2.1 Introduction
23(2)
2.2 The Structure of K-Turns in RNA
25(1)
2.3 The L7Ae Family of Proteins and Their Cellular Roles
26(1)
2.4 The Molecular Recognition of K-Turns by L7Ae-Family Proteins
26(2)
2.5 L7Ae-Family Proteins Bind k-Turns with High Affinity, Generating the Kinked Conformation
28(1)
2.6 The Manner of K-Turn Folding Resulting from the Binding of L7Ae-Family Proteins
29(2)
2.7 Modulation of L7Ae-Family Protein Binding and k-Turn Folding by N6-Methylation of Adenine
31(2)
2.8 L7Ae-Bound K-Turns in Nanoconstruction
33(1)
2.9 Summary
34(1)
References
34(5)
3 Evolving Methods in Defining the Role of RNA in RNP Assembly
39(18)
Jaya Sarkar
Jong Chan Lee
Sua Myong
3.1 Introduction
39(5)
3.2 Current Methods in Probing RNP Granules: Strengths and Limitations
44(2)
3.3 Methods to Probe Initial Phases of RNP Assembly
46(7)
3.4 Concluding Thoughts
53(1)
References
53(4)
4 Single-Molecule Studies of Exonucleases: Following Cleavage Actions One Step at a Time
57(28)
Gwangrog Lee
4.1 Introduction
57(1)
4.2 Single-Molecule Methods to Study Nuclease Mechanisms
58(5)
4.3 Molecular Bases of Nucleic Acid Degradation by Nucleases
63(15)
4.4 Conclusions
78(1)
References
78(7)
5 Fitting in the Age of Single-Molecule Experiments: A Guide to Maximum-Likelihood Estimation and Its Advantages
85(24)
Behrouz Eslami-Mosallam
Iason Katechis
Martin Depken
5.1 Introduction
85(1)
5.2 Prerequisites
86(4)
5.3 Maximum Likelihood
90(6)
5.4 Comparing LS and ML Through Simulations
96(4)
5.5 Fitting Experimental Data
100(3)
5.6 Conclusion
103(1)
References
104(5)
Part II Transcription and Translation
6 A Single-Molecule View on Cellular and Viral RNA Synthesis
109(34)
Eugen Ostrofet
Flavia Stal Papini
Anssi M. Malinen
David Dulin
6.1 Introduction
109(2)
6.2 In Vitro Single-Molecule Studies of Cellular RNAPs
111(15)
6.3 In Vitro Single-Molecule Studies of Viral RNA-Dependent RNA Polymerases
126(7)
6.4 Perspective
133(1)
References
133(10)
7 Single-Molecule Optical Tweezers Studies of Translation
143(24)
Xiaohui Qu
7.1 Introduction
143(1)
7.2 The Single-Molecule Optical Tweezers Technique
144(3)
7.3 mRNA Structure Disruption in Translation Initiation
147(3)
7.4 The Decoding Process
150(9)
7.5 Interactions Between Nascent Polypeptide and Ribosome
159(1)
7.6 Concluding Remarks
160(1)
References
161(6)
Part III RNA-Guided Protein Machineries
8 Biophysical and Biochemical Approaches in the Analysis of Argonaute-MicroRNA Complexes
167(22)
Sujin Kim
Yoosik Kim
8.1 Introduction
167(1)
8.2 Functional Domains of Ago
168(3)
8.3 Assembly of Ago-MiRNA Complex
171(2)
8.4 Target Recognition by Minimal RISC
173(3)
8.5 Implications of the Sub-seed Region: 1-D Target Search
176(3)
8.6 Toward Target Cleavage
179(2)
8.7 Concluding Remarks
181(2)
References
183(6)
9 Biophysics of RNA-Guided CRISPR Immunity
189(22)
Luuk Loeff
Chirlmin Joo
9.1 Introduction
189(4)
9.2 Target Search
193(3)
9.3 crRNA-DNA Duplex Formation
196(2)
9.4 Conformational Dynamics of CRISPR Effector Complexes
198(3)
9.5 CRISPR-Mediated DNA Degradation
201(4)
9.6 Outlook
205(1)
References
205(6)
10 Dynamics of MicroRNA Biogenesis
211
Mohamed Fareh
10.1 Introduction
211(2)
10.2 Genomic Architecture and Transcription Regulation of MicroRNA
213(1)
10.3 MicroRNA Processing by Drosha-DGCR8 Complex
214(5)
10.4 MicroRNA Transport Through the Nuclear Pore Complex
219(5)
10.5 Pre-miRNA Recognition and Processing by Dicer-TRBP
224(17)
10.6 Concluding Remarks
241(2)
References
243
Dr. David Rueda is a Professor at Imperial College. He is Chair of Molecular and Cellular Medicine. His research in the Rueda lab involves the development of quantitative single-molecule approaches to investigate the mechanism of complex biochemical systems (incl. RNA, DNA and protein). Previously, Dr. Rueda was an Assistant Professor at Wayne State University. He received his Docteur čs Sciences from EPF Lausanne in 2001, and his Dipl. Chem. Eng. from EPF Lausanne in 1997.

Dr. Chirlmin Joo studied physics at Seoul National University in Korea. He obtained his PhD in physics under the supervision of Taekjip Ha at the University of Illinois at Urbana-Champaign, USA. In 2011, he started his faculty position in Department of Bionanoscience at Delft University of Technology in the Netherlands. He developed the first single-molecule pull-down technique (the reconstitution of functional protein complexes at the single-molecule level). In 2018, Dr. Joo was appointed Director of Kavli Institute of Nanoscience Delft. He is the co-founder of a startup company, Bluemics.