About the Editors |
|
xvi | |
List of Contributors |
|
xviii | |
Preface |
|
xxiii | |
Acknowledgment |
|
s xxiv | |
1 An Introduction to Microbial Biodiversity and Bioprospection |
|
1 | (5) |
|
|
|
|
|
1 | (2) |
|
|
1 | (1) |
|
|
1 | (1) |
|
1.1.3 Bioprospection of Microorganisms |
|
|
2 | (1) |
|
1.2 Conclusions and Perspectives |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
4 | (2) |
2 Application of Microorganisms in Biosurfactant Production |
|
6 | (25) |
|
|
|
Gerardo Saucedo-Castaneda |
|
|
Jose de Jesus Cazares-Marinero |
|
|
2.1 Biosurfactants Nature and Classification |
|
|
6 | (6) |
|
2.2 Biosynthesis of BS by Archaea and Bacteria |
|
|
12 | (2) |
|
2.3 Biosynthesis of BS by Yeasts and Molds |
|
|
14 | (1) |
|
2.4 Screening for BS Producers |
|
|
15 | (1) |
|
2.5 A Case Study: SL by Solid-State Fermentation (SSF), Kinetics, and Reactor Size Estimation |
|
|
16 | (7) |
|
2.6 Conclusions and Perspectives |
|
|
23 | (1) |
|
|
24 | (7) |
3 Microbial Gums: Current Trends and Applications |
|
31 | (16) |
|
|
|
|
31 | (1) |
|
3.2 Biosynthesis of Microbial Gums |
|
|
32 | (1) |
|
3.3 Production of Microbial Gums |
|
|
33 | (1) |
|
3.4 Structure and Properties of Microbial Gums |
|
|
34 | (1) |
|
3.5 Types of Microbial Gums |
|
|
34 | (5) |
|
|
36 | (1) |
|
|
36 | (2) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (1) |
|
3.5.4 Other Microbial Gums |
|
|
38 | (1) |
|
3.6 Applications of Microbial Gums |
|
|
39 | (3) |
|
|
40 | (1) |
|
3.6.2 Biomedical Applications |
|
|
41 | (1) |
|
3.6.3 Applications in Nanotechnology |
|
|
42 | (1) |
|
3.7 Conclusions and Perspectives |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
43 | (4) |
4 Antiaging and Skin Lightening Microbial Products |
|
47 | (30) |
|
|
|
|
|
|
|
|
47 | (1) |
|
|
48 | (4) |
|
|
48 | (2) |
|
|
50 | (1) |
|
4.2.3 Intrinsic Skin Aging Factors |
|
|
50 | (2) |
|
4.2.3.1 Anatomical and Histological Changes |
|
|
50 | (1) |
|
4.2.3.2 Telomere Shortening |
|
|
50 | (1) |
|
4.2.3.3 Metabolic ROS Production |
|
|
51 | (1) |
|
4.2.3.4 Upregulation of Matrix Metalloproteinases |
|
|
51 | (1) |
|
4.2.3.5 Mitochondrial Dysfunction |
|
|
51 | (1) |
|
4.2.3.6 Mutations and Oncogenesis |
|
|
51 | (1) |
|
4.3 Extrinsic Skin Aging Factors |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
53 | (1) |
|
|
53 | (14) |
|
4.4.1 Bacterial Compounds |
|
|
54 | (1) |
|
4.4.2 Polysaccharides and Oligosaccharides |
|
|
54 | (2) |
|
|
54 | (1) |
|
4.4.2.2 Bacterial Cellulose |
|
|
55 | (1) |
|
4.4.2.3 Astaxanthin and Equol |
|
|
55 | (1) |
|
|
56 | (1) |
|
4.4.3.1 Tyrosinase Inhibition |
|
|
56 | (1) |
|
4.4.3.2 Hyaluronidase Inhibition |
|
|
56 | (1) |
|
4.4.3.3 Collagenase and Elastase Inhibition |
|
|
57 | (1) |
|
|
57 | (5) |
|
4.4.4.1 Carbohydrates from Algae |
|
|
58 | (2) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
4.4.5 Pigments from Algae |
|
|
62 | (5) |
|
4.4.5.1 Phycobiliproteins |
|
|
62 | (2) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
64 | (2) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
4.4.6 Secondary Metabolites |
|
|
67 | (1) |
|
4.5 Conclusions and Perspectives |
|
|
67 | (1) |
|
|
68 | (9) |
5 Application of Microorganisms in Bioremediation |
|
77 | (27) |
|
|
|
|
77 | (1) |
|
5.2 Microbial Bioremediation |
|
|
78 | (1) |
|
5.3 Microbial Bioremediation of Organic Pollutants |
|
|
79 | (8) |
|
5.3.1 Bioremediation of Alkanes |
|
|
79 | (1) |
|
5.3.2 Bioremediation of Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) |
|
|
80 | (1) |
|
5.3.3 Bioremediation of Polyaromatic Hydrocarbons |
|
|
80 | (3) |
|
5.3.3.1 Degradation of High-Molecular-Weight Polyaromatic Hydrocarbons |
|
|
83 | (1) |
|
5.3.4 Fungal Degradation of Polyaromatic Hydrocarbons |
|
|
83 | (1) |
|
5.3.4.1 Bioremediation of PAHs by Ligninolytic Fungi |
|
|
84 | (1) |
|
5.3.4.2 Catabolism of PAHs by Non-Ligninolytic Fungi |
|
|
84 | (1) |
|
5.3.5 Bioremediation of Pesticides by Microbes |
|
|
84 | (3) |
|
5.4 Microbial Degradation of Heavy Metals |
|
|
87 | (2) |
|
5.5 Factors Affecting Bioremediation |
|
|
89 | (2) |
|
|
90 | (1) |
|
|
91 | (1) |
|
5.6 Advances in Bioremediation |
|
|
91 | (3) |
|
5.7 Conclusions and Perspectives |
|
|
94 | (1) |
|
|
95 | (9) |
6 Microbial Applications in Organic Acid Production |
|
104 | (21) |
|
|
|
|
|
104 | (1) |
|
|
105 | (3) |
|
|
108 | (1) |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
114 | (1) |
|
6.13 Muconic and Adipic Acid (C6) |
|
|
115 | (2) |
|
6.14 Conclusions and Perspectives |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
117 | (8) |
7 Production of Bioactive Compounds vs. Recombinant Proteins |
|
125 | (22) |
|
|
|
|
|
|
|
Luis F. Saraiva Macedo Timmers |
|
|
Claucia F. Volken de Souza |
|
|
|
|
|
125 | (1) |
|
7.2 In vitro Cell-Based Assays |
|
|
126 | (1) |
|
7.3 Cell Viability Assays |
|
|
127 | (1) |
|
7.4 Cell Metabolic Assays |
|
|
127 | (1) |
|
|
128 | (1) |
|
7.6 Cell Transformation Assays |
|
|
129 | (1) |
|
7.7 Cell Irritation Assays |
|
|
129 | (1) |
|
7.8 Heterologous Expression of Recombinant Proteins of Biomedical Relevance |
|
|
130 | (2) |
|
7.9 Lactic Acid Bacteria and the Production of Metabolites with Therapeutic Roles |
|
|
132 | (2) |
|
|
134 | (3) |
|
|
135 | (1) |
|
7.10.2 Repeated Dose Toxicity |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
136 | (1) |
|
7.10.5 Reproductive Toxicity |
|
|
137 | (1) |
|
7.11 Computer-aided Drug Design |
|
|
137 | (3) |
|
7.12 Conclusions and Perspectives |
|
|
140 | (1) |
|
|
140 | (7) |
8 Microbial Production of Antimicrobial and Anticancerous Biomolecules |
|
147 | (23) |
|
|
|
|
|
|
147 | (1) |
|
|
148 | (3) |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
150 | (1) |
|
8.3 Microbial Bioprospecting Methods |
|
|
151 | (2) |
|
8.3.1 Cultural Bioprospecting |
|
|
151 | (1) |
|
8.3.2 Nonculturable Microorganism's Bioprospecting |
|
|
152 | (1) |
|
8.3.3 In Silico Bioprospecting of Microorganisms |
|
|
152 | (1) |
|
|
153 | (7) |
|
|
155 | (1) |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
158 | (1) |
|
8.4.7 Bioenergy Compounds |
|
|
158 | (1) |
|
8.4.8 Anticancer Compounds |
|
|
158 | (2) |
|
|
160 | (1) |
|
8.6 Conclusions and Perspectives |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
161 | (9) |
9 Microbial Fuel Cells and Plant Microbial Fuel Cells to Degradation of Polluted Contaminants in Soil and Water |
|
170 | (31) |
|
|
|
|
170 | (2) |
|
|
172 | (1) |
|
|
173 | (2) |
|
9.3.1 Electricigens of Bacteria |
|
|
173 | (2) |
|
9.3.2 Electrocigens of Fungi |
|
|
175 | (1) |
|
9.4 Electron Generation and Transfer Mechanisms of Electricigens |
|
|
175 | (2) |
|
9.4.1 Electron Generation Mechanism |
|
|
175 | (1) |
|
9.4.2 Electron Transfer Mechanism |
|
|
175 | (1) |
|
|
176 | (1) |
|
9.4.4 Electron Shuttle Mechanism |
|
|
176 | (1) |
|
9.4.5 Electron Transfer by Exogenous Mediators |
|
|
176 | (1) |
|
9.4.6 Microbial Secondary Metabolites for Electron Transfer |
|
|
177 | (1) |
|
9.4.7 Oxidation of Reduced Primary Metabolites |
|
|
177 | (1) |
|
|
177 | (5) |
|
|
177 | (1) |
|
9.5.2 Base Materials of the Anode |
|
|
177 | (1) |
|
9.5.3 The Modification of Anode Materials |
|
|
178 | (1) |
|
|
179 | (1) |
|
9.5.5 Carbon-Based Materials of Cathodes |
|
|
179 | (1) |
|
9.5.6 Non-Carbon-Based Materials |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
181 | (1) |
|
9.5.9 Separator Materials |
|
|
181 | (1) |
|
9.5.9.1 Conventional Separator Materials |
|
|
181 | (1) |
|
9.5.9.2 New Separator Materials |
|
|
181 | (1) |
|
9.6 Design and Operation of Bioelectrochemical Systems |
|
|
182 | (5) |
|
|
182 | (3) |
|
9.6.1.1 Two-Compartment MFCs |
|
|
182 | (2) |
|
|
184 | (1) |
|
9.6.1.3 Other Configurations |
|
|
185 | (1) |
|
9.6.2 Soil MFC and PMFC Configurations |
|
|
185 | (2) |
|
9.6.2.1 Dual-Chamber of Soil MFCs and PMFCs |
|
|
185 | (1) |
|
9.6.2.2 Single-Chamber MFCs |
|
|
186 | (1) |
|
9.6.2.3 Air-Diffusion Cathode System |
|
|
186 | (1) |
|
9.6.2.4 Other Configuration of PMFCs |
|
|
187 | (1) |
|
9.7 Performances of the MFCs in Actual Wastewater Treatment |
|
|
187 | (2) |
|
9.7.1 Industrial Wastewater |
|
|
187 | (1) |
|
9.7.2 Domestic and Livestock Wastewater |
|
|
188 | (1) |
|
9.8 Soil MFCs for Soil Remediation |
|
|
189 | (1) |
|
9.8.1 Remediation of Organic Contaminated Soils |
|
|
189 | (1) |
|
9.8.2 Remediation of Heavy Metal Contaminated Soils |
|
|
189 | (1) |
|
9.9 PMFCs for Environmental Remediation |
|
|
190 | (1) |
|
9.9.1 PMFCs for Wastewater Treatment |
|
|
190 | (1) |
|
9.9.2 PMFCs for Soil Remediation |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
191 | (1) |
|
|
192 | (9) |
10 Microalgae-Based UV Protection Compounds |
|
201 | (24) |
|
Jorge Alberto Vieira Costa |
|
|
|
Gabrielle Guimaraes Izaguirres |
|
|
|
|
|
201 | (1) |
|
|
202 | (1) |
|
10.3 Protection Compounds Induced by UV Radiation |
|
|
202 | (4) |
|
10.3.1 Mycosporine-Like Amino Acids |
|
|
203 | (1) |
|
10.3.2 Phenolic Compounds |
|
|
203 | (1) |
|
|
203 | (1) |
|
|
204 | (1) |
|
|
204 | (1) |
|
|
205 | (1) |
|
10.4 Microalgal Biotechnology for the Production of Photoprotective Compounds |
|
|
206 | (3) |
|
10.5 Effects of UV Radiation on the Growth, Morphology, and Production of Lipids, Proteins, and Carbohydrates |
|
|
209 | (2) |
|
10.6 Extraction Methods of Photoprotective Compounds |
|
|
211 | (2) |
|
10.7 Prospects for Commercial Applications |
|
|
213 | (2) |
|
10.8 Conclusion and Perspectives |
|
|
215 | (1) |
|
|
215 | (10) |
11 Microorganisms as a Potential Source of Antioxidants |
|
225 | (17) |
|
|
|
Gloria A. Martinez-Medina |
|
|
|
|
|
|
225 | (1) |
|
11.2 Antioxidant-Producing Microorganisms |
|
|
225 | (1) |
|
11.3 Production of Some Microbial Antioxidants and Their Action Mechanisms |
|
|
226 | (4) |
|
|
226 | (1) |
|
|
227 | (2) |
|
|
229 | (1) |
|
11.4 Extraction and Purification of Microbial Antioxidants |
|
|
230 | (1) |
|
11.4.1 Extraction of Microbial Antioxidants |
|
|
230 | (1) |
|
11.4.2 Purification of Microbial Antioxidants |
|
|
231 | (1) |
|
11.5 Evaluation of Antioxidant Activity |
|
|
231 | (4) |
|
|
232 | (2) |
|
|
234 | (1) |
|
11.6 Conclusions and Perspectives |
|
|
235 | (1) |
|
|
236 | (6) |
12 Microbial Production of Biomethane from Digested Waste and Its Significance |
|
242 | (12) |
|
|
|
|
|
|
242 | (1) |
|
|
243 | (2) |
|
|
243 | (2) |
|
|
244 | (1) |
|
|
244 | (1) |
|
|
244 | (1) |
|
|
245 | (1) |
|
|
245 | (3) |
|
|
247 | (1) |
|
|
247 | (1) |
|
12.3.3 Agricultural Waste |
|
|
248 | (1) |
|
12.4 Digestion Processes of Organic Wastes |
|
|
248 | (2) |
|
12.4.1 Hydrolysis of Organic Waste |
|
|
248 | (1) |
|
12.4.2 Acidogenesis of Hydrolyzed Matter |
|
|
249 | (1) |
|
|
249 | (6) |
|
|
250 | (1) |
|
12.5 Conclusions and Perspectives |
|
|
250 | (1) |
|
|
250 | (1) |
|
|
250 | (1) |
|
|
250 | (4) |
13 Enzymatic Biosynthesis of Carbohydrate Biopolymers and Uses Thereof |
|
254 | (24) |
|
|
|
|
|
|
254 | (1) |
|
|
255 | (1) |
|
13.2.1 Mechanism of Dextran Production |
|
|
255 | (1) |
|
13.2.2 Production of Dextran at Industrial Level |
|
|
255 | (1) |
|
13.2.3 Applications of Dextran |
|
|
256 | (1) |
|
|
256 | (4) |
|
13.3.1 Biological Extraction of Chitin |
|
|
257 | (2) |
|
13.3.1.1 Biosynthesis of Chitin and Chitosan |
|
|
257 | (1) |
|
13.3.1.2 Chitin and Chitosan-Producing Fungi |
|
|
257 | (1) |
|
13.3.1.3 Enzymatic Deproteinization |
|
|
257 | (2) |
|
|
259 | (1) |
|
13.3.1.5 Enzymatic Deacetylation |
|
|
259 | (1) |
|
13.3.2 Applications of Chitin and Chitosan |
|
|
259 | (1) |
|
|
260 | (1) |
|
13.4.1 Xanthan Gum Production |
|
|
260 | (1) |
|
13.4.2 Microbial Production |
|
|
261 | (1) |
|
13.4.3 Applications of Xanthan Gum |
|
|
261 | (1) |
|
|
261 | (2) |
|
13.5.1 Biosynthetic Pathway for Cellulose Production |
|
|
261 | (1) |
|
13.5.2 Cellulose Precursor |
|
|
262 | (1) |
|
13.5.3 Microbial Source for Cellulose Production |
|
|
262 | (1) |
|
13.5.4 Applications of Cellulose |
|
|
263 | (1) |
|
|
263 | (3) |
|
13.6.1 Levan Producing Organism |
|
|
264 | (1) |
|
13.6.2 Mechanism for Levan Biosynthesis |
|
|
264 | (1) |
|
13.6.3 Strategies for Levan Production |
|
|
265 | (1) |
|
13.6.4 Applications of Levan |
|
|
265 | (1) |
|
13.7 Conclusions and Perspectives |
|
|
266 | (1) |
|
|
266 | (1) |
|
|
266 | (12) |
14 Polysaccharides from Marine Microalgal Sources |
|
278 | (17) |
|
|
|
|
|
|
278 | (1) |
|
14.2 Polysaccharides from Marine Microalgae |
|
|
279 | (3) |
|
14.2.1 Subcritical Water Hydrolysis |
|
|
280 | (1) |
|
14.2.2 Ultrasonic-Aided Extraction |
|
|
281 | (1) |
|
14.2.3 Microwave-Assisted Extraction |
|
|
282 | (1) |
|
14.2.4 Enzyme-Assisted Extraction |
|
|
282 | (1) |
|
14.3 Optimization of Microalgae Culture Conditions |
|
|
282 | (3) |
|
14.4 Bioactivities and Potential Health Benefits |
|
|
285 | (3) |
|
14.4.1 Antiviral Activity |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
287 | (1) |
|
|
288 | (1) |
|
14.5 Conclusions and Perspectives |
|
|
288 | (1) |
|
|
288 | (1) |
|
|
289 | (6) |
15 Microbial Production of Bioplastic: Current Status and Future Prospects |
|
295 | (24) |
|
|
|
295 | (2) |
|
15.2 General Structure of PHA |
|
|
297 | (1) |
|
|
298 | (1) |
|
15.4 Biodegradability of PHA |
|
|
298 | (1) |
|
|
299 | (1) |
|
15.6 Challenges of Scaling Up of PHA Production on an Industrial Scale |
|
|
300 | (4) |
|
15.6.1 Renewable Sources as Feedstock for PHA Production |
|
|
300 | (2) |
|
15.6.1.1 Food Processing and Agricultural Industries Discharge |
|
|
300 | (1) |
|
|
301 | (1) |
|
15.6.1.3 Agro-Industrial Oily Wastes |
|
|
301 | (1) |
|
|
302 | (1) |
|
15.6.3 Bacteria from Extreme Niches |
|
|
303 | (3) |
|
15.6.3.1 Halophilic Bacteria |
|
|
303 | (1) |
|
15.6.3.2 Thermophiles for PHA |
|
|
304 | (1) |
|
15.6.3.3 Psycrophiles for PHA |
|
|
304 | (1) |
|
15.7 Co-synthesis of PHA with Value-Added Products |
|
|
304 | (1) |
|
|
305 | (1) |
|
|
306 | (3) |
|
15.9.1 Biomedical Applications |
|
|
306 | (1) |
|
15.9.2 Soft Tissue Implants |
|
|
307 | (1) |
|
15.9.3 Esophagus, Pericardial Patches |
|
|
307 | (1) |
|
15.9.4 Heart Valve Tissue Engineering |
|
|
307 | (1) |
|
15.9.5 Nerve Regeneration |
|
|
308 | (1) |
|
15.9.6 Drug Delivery System |
|
|
308 | (1) |
|
15.10 Conclusions and Perspectives |
|
|
309 | (1) |
|
|
309 | (10) |
16 Microbial Enzymes for the Mineralization of Xenobiotic Compounds |
|
319 | (18) |
|
|
|
|
|
319 | (1) |
|
16.2 Major Pollutants and Their Removal with White-Rot Fungi |
|
|
320 | (3) |
|
|
320 | (1) |
|
16.2.2 Polychlorinated Biphenyls |
|
|
321 | (1) |
|
16.2.3 Polycyclic Aromatic Hydrocarbons |
|
|
321 | (1) |
|
|
322 | (1) |
|
16.2.5 Synthetic Polymers |
|
|
322 | (1) |
|
16.2.6 Phenolic Compounds |
|
|
322 | (1) |
|
16.2.7 Petroleum Hydrocarbons |
|
|
323 | (1) |
|
16.3 Enzyme System of White-Rot Fungi |
|
|
323 | (7) |
|
|
323 | (5) |
|
|
327 | (1) |
|
|
328 | (1) |
|
16.3.3 Manganese Peroxidase |
|
|
329 | (1) |
|
|
329 | (1) |
|
|
330 | (1) |
|
|
330 | (1) |
|
16.5 Conclusions and Perspectives |
|
|
331 | (1) |
|
|
331 | (1) |
|
Compliance with Ethical Guidelines |
|
|
332 | (1) |
|
|
332 | (5) |
17 Functional Oligosaccharides and Microbial Sources |
|
337 | (20) |
|
|
|
337 | (2) |
|
17.1.1 What Are Functional Foods? All You Need to Know |
|
|
338 | (1) |
|
17.2 Inulin and Oligofructose: The Preliminary Functional Oligosaccharides |
|
|
339 | (1) |
|
17.3 GRAS and FOSHU Status |
|
|
339 | (1) |
|
17.4 Conventional and Upcoming Oligosaccharides |
|
|
339 | (1) |
|
17.5 Microbes and Functional Oligosaccharides |
|
|
340 | (1) |
|
17.6 Arabinoxylo-Oligosaccharides |
|
|
340 | (1) |
|
17.7 Sources and Properties |
|
|
341 | (1) |
|
17.8 Approaches for AXOS Production |
|
|
341 | (1) |
|
17.9 Isomaltooligosaccharides |
|
|
342 | (1) |
|
17.10 Sources and Properties |
|
|
343 | (1) |
|
|
344 | (1) |
|
17.12 Approaches to Improve IMO Production |
|
|
344 | (1) |
|
|
345 | (2) |
|
17.14 Novel Approaches in Lactosucrose Preparation |
|
|
347 | (1) |
|
17.15 Xylooligosaccharides |
|
|
347 | (1) |
|
17.16 Occurrence and Properties |
|
|
348 | (1) |
|
17.17 Approaches to Improve the Efficiency of XOS |
|
|
349 | (1) |
|
17.18 Conclusions and Perspectives |
|
|
349 | (1) |
|
|
350 | (7) |
18 Algal Biomass and Biofuel Production |
|
357 | (20) |
|
|
|
|
|
|
357 | (1) |
|
|
357 | (2) |
|
18.2.1 First-Generation Biofuels |
|
|
358 | (1) |
|
18.2.2 Second-Generation Biofuels |
|
|
358 | (1) |
|
18.2.3 Third-Generation Biofuels |
|
|
359 | (1) |
|
|
359 | (1) |
|
18.4 Microalgae as Biofuel Biomass |
|
|
360 | (2) |
|
18.5 Microalgae Culture Systems |
|
|
362 | (2) |
|
18.5.1 Open Algal Systems |
|
|
362 | (1) |
|
18.5.2 Closed Algal Systems |
|
|
363 | (1) |
|
18.5.3 Hybrid Algal Systems |
|
|
363 | (1) |
|
18.6 Microalgae Harvesting |
|
|
364 | (1) |
|
18.7 Processing and Extraction of Components |
|
|
364 | (1) |
|
18.8 Biofuel Conversion Processes |
|
|
364 | (4) |
|
18.8.1 Transesterification |
|
|
365 | (1) |
|
18.8.2 Biochemical Methods |
|
|
366 | (1) |
|
|
366 | (1) |
|
18.8.2.2 Anaerobic Digestion |
|
|
366 | (1) |
|
18.8.3 Thermochemical Conversions |
|
|
367 | (1) |
|
|
367 | (1) |
|
|
367 | (1) |
|
|
368 | (1) |
|
|
368 | (1) |
|
|
368 | (3) |
|
|
368 | (1) |
|
|
369 | (1) |
|
|
370 | (1) |
|
18.9.4 Bio-Oil and Bio-Syngas |
|
|
370 | (1) |
|
|
371 | (1) |
|
18.10 Conclusions and Perspectives |
|
|
371 | (1) |
|
|
371 | (6) |
19 Microbial Source of Insect-Toxic Proteins |
|
377 | (27) |
|
|
|
|
377 | (1) |
|
|
378 | (6) |
|
|
384 | (2) |
|
|
386 | (1) |
|
19.5 Conclusions and Perspectives |
|
|
387 | (1) |
|
|
388 | (16) |
20 Recent il-ends in Conventional and Nonconventional Bioprocessing |
|
404 | (14) |
|
|
|
|
|
20.1 Advances in Conventional Bioprocessing |
|
|
404 | (5) |
|
20.1.1 The Stirred-Tank Bioreactor Systems |
|
|
407 | (2) |
|
20.2 Nonconventional Bioprocessing |
|
|
409 | (4) |
|
|
409 | (1) |
|
20.2.2 Orbital Shaken Bioreactors |
|
|
410 | (1) |
|
20.2.3 Stirred Tank Bioreactors |
|
|
411 | (2) |
|
20.3 Brief Note on the Recent Trends in Downstream Bioprocessing |
|
|
413 | (1) |
|
20.4 Perfusion Culture for Bioprocess Intensification |
|
|
413 | (3) |
|
20.5 Conclusions and Perspectives |
|
|
416 | (1) |
|
|
416 | (2) |
Index |
|
418 | |