Atjaunināt sīkdatņu piekrišanu

E-grāmata: Bioprospecting of Microorganism-Based Industrial Molecules

  • Formāts: EPUB+DRM
  • Izdošanas datums: 30-Nov-2021
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119717263
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 186,72 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 30-Nov-2021
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119717263
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Bioprospecting of Microorganism based Industrial Molecules demonstrates biomass value of neutraceutical, pharmaceutical, food, biomedical, bioenergetic importance. This book covers diverse aspects of bioprospecting of microorganisms for the extraction of several industrially important biomolecules. The authors present an amalgamation of translational research on bioresource utilization and ecological sustainability that will further the reader's knowledge of the applications of different microbial diversity and reveal new avenues of research investigation. Readers will also benefit from: * A thorough introduction to microbial biodiversity and bioprospecting * An exploration of anti-ageing and skin lightening microbial products and microbial production of anti-cancerous biomolecules * A treatment of UV protective compounds from algal biodiversity and polysaccharides from marine microalgal sources * Discussions of microbial sources of insect toxic proteins and the role of microbes in bio-surfactants production Perfect for academics, scientists, researchers, graduate and post-graduate students working and studying in the areas of microbiology, food biotechnology, industrial microbiology, plant biotechnology, and microbial biotechnology, Bioprospecting of Microorganism based Industrial Molecules is an indispensable guide for anyone looking for a comprehensive overview of the subject"--

Discover a comprehensive and current overview of microbial bioprospecting written by leading voices in the field

In Bioprospecting of Microorganism-Based Industrial Molecules, distinguished researchers and authors Sudhir P. Singh and Santosh Kumar Upadhyay deliver global perspectives of bioprospecting of biodiversity. The book covers diverse aspects of bioprospecting of microorganisms demonstrating biomass value of nutraceutical, pharmaceutical, biomedical, and bioenergetic importance.

The authors present an amalgamation of translational research on bioresource utilization and ecological sustainability that will further the reader’s knowledge of the applications of different microbial diversity and reveal new avenues of research investigation.

Readers will also benefit from:

  • A thorough introduction to microbial biodiversity and bioprospecting
  • An exploration of anti-ageing and skin lightening microbial products and microbial production of anti-cancerous biomolecules
  • A treatment of UV protective compounds from algal biodiversity and polysaccharides from marine microalgal sources
  • Discussions of microbial sources of insect toxic proteins and the role of microbes in bio-surfactants production

Perfect for academics, scientists, researchers, graduate and post-graduate students working and studying in the areas of microbiology, food biotechnology, industrial microbiology, plant biotechnology, and microbial biotechnology, Bioprospecting of Microorganism-Based Industrial Molecules is an indispensable guide for anyone looking for a comprehensive overview of the subject.

About the Editors xvi
List of Contributors xviii
Preface xxiii
Acknowledgment s xxiv
1 An Introduction to Microbial Biodiversity and Bioprospection 1(5)
Tomoya Shintani
Santosh Kumar Upadhyay
Sudhir P. Singh
1.1 Introduction
1(2)
1.1.1 Microorganisms
1(1)
1.1.2 Bioprospecting
1(1)
1.1.3 Bioprospection of Microorganisms
2(1)
1.2 Conclusions and Perspectives
3(1)
Acknowledgment
4(1)
References
4(2)
2 Application of Microorganisms in Biosurfactant Production 6(25)
Lorena Pedraza-Segura
Luis V. Rodriguez-Duran
Gerardo Saucedo-Castaneda
Jose de Jesus Cazares-Marinero
2.1 Biosurfactants Nature and Classification
6(6)
2.2 Biosynthesis of BS by Archaea and Bacteria
12(2)
2.3 Biosynthesis of BS by Yeasts and Molds
14(1)
2.4 Screening for BS Producers
15(1)
2.5 A Case Study: SL by Solid-State Fermentation (SSF), Kinetics, and Reactor Size Estimation
16(7)
2.6 Conclusions and Perspectives
23(1)
References
24(7)
3 Microbial Gums: Current Trends and Applications 31(16)
Rwivoo Baruah
Prakash M. Halami
3.1 Introduction
31(1)
3.2 Biosynthesis of Microbial Gums
32(1)
3.3 Production of Microbial Gums
33(1)
3.4 Structure and Properties of Microbial Gums
34(1)
3.5 Types of Microbial Gums
34(5)
3.5.1 Xanthan Gum
36(1)
3.5.2 Sphingans
36(2)
3.5.2.1 Gellan Gum
36(1)
3.5.2.2 Welan Gum
37(1)
3.5.2.3 Rhamsan Gum
37(1)
3.5.2.4 Diutan Gum
38(1)
3.5.3 Pullulan
38(1)
3.5.4 Other Microbial Gums
38(1)
3.6 Applications of Microbial Gums
39(3)
3.6.1 Food Applications
40(1)
3.6.2 Biomedical Applications
41(1)
3.6.3 Applications in Nanotechnology
42(1)
3.7 Conclusions and Perspectives
42(1)
Acknowledgments
43(1)
References
43(4)
4 Antiaging and Skin Lightening Microbial Products 47(30)
Prabuddha Gupta
Ujwalkumar Trivedi
Mahendrapalsingh Rajput
Tejas Oza
Jasmita Chauhan
Gaurav Sanghvi
4.1 Introduction
47(1)
4.2 Aging
48(4)
4.2.1 Structure of Skin
48(2)
4.2.2 Skin Aging Factors
50(1)
4.2.3 Intrinsic Skin Aging Factors
50(2)
4.2.3.1 Anatomical and Histological Changes
50(1)
4.2.3.2 Telomere Shortening
50(1)
4.2.3.3 Metabolic ROS Production
51(1)
4.2.3.4 Upregulation of Matrix Metalloproteinases
51(1)
4.2.3.5 Mitochondrial Dysfunction
51(1)
4.2.3.6 Mutations and Oncogenesis
51(1)
4.3 Extrinsic Skin Aging Factors
52(1)
4.3.1 Photoaging
52(1)
4.3.2 Tobacco Smoking
52(1)
4.3.3 Air Pollution
53(1)
4.4 Why Microbes
53(14)
4.4.1 Bacterial Compounds
54(1)
4.4.2 Polysaccharides and Oligosaccharides
54(2)
4.4.2.1 Hyaluronic Acid
54(1)
4.4.2.2 Bacterial Cellulose
55(1)
4.4.2.3 Astaxanthin and Equol
55(1)
4.4.3 Fungi Compounds
56(1)
4.4.3.1 Tyrosinase Inhibition
56(1)
4.4.3.2 Hyaluronidase Inhibition
56(1)
4.4.3.3 Collagenase and Elastase Inhibition
57(1)
4.4.4 Algae Compounds
57(5)
4.4.4.1 Carbohydrates from Algae
58(2)
4.4.4.2 Fucoidan
60(1)
4.4.4.3 Laminaran
60(1)
4.4.4.4 Ulvans
60(1)
4.4.4.5 Porphyran
61(1)
4.4.4.6 Carrageenan
61(1)
4.4.4.7 Agar
61(1)
4.4.4.8 Alginic Acids
62(1)
4.4.5 Pigments from Algae
62(5)
4.4.5.1 Phycobiliproteins
62(2)
4.4.5.2 Chlorophylls
64(1)
4.4.5.3 Carotenoids
64(1)
4.4.5.4 β-carotene
64(2)
4.4.5.5 Canthaxanthins
66(1)
4.4.5.6 Astaxanthin
66(1)
4.4.5.7 Fucoxanthin
66(1)
4.4.5.8 Zeaxanthin
66(1)
4.4.5.9 Violaxanthin
66(1)
4.4.6 Secondary Metabolites
67(1)
4.5 Conclusions and Perspectives
67(1)
References
68(9)
5 Application of Microorganisms in Bioremediation 77(27)
Himani Thakkar
Vinnyfred Vincent
5.1 Introduction
77(1)
5.2 Microbial Bioremediation
78(1)
5.3 Microbial Bioremediation of Organic Pollutants
79(8)
5.3.1 Bioremediation of Alkanes
79(1)
5.3.2 Bioremediation of Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)
80(1)
5.3.3 Bioremediation of Polyaromatic Hydrocarbons
80(3)
5.3.3.1 Degradation of High-Molecular-Weight Polyaromatic Hydrocarbons
83(1)
5.3.4 Fungal Degradation of Polyaromatic Hydrocarbons
83(1)
5.3.4.1 Bioremediation of PAHs by Ligninolytic Fungi
84(1)
5.3.4.2 Catabolism of PAHs by Non-Ligninolytic Fungi
84(1)
5.3.5 Bioremediation of Pesticides by Microbes
84(3)
5.4 Microbial Degradation of Heavy Metals
87(2)
5.5 Factors Affecting Bioremediation
89(2)
5.5.1 Abiotic Factors
90(1)
5.5.2 Biotic Factors
91(1)
5.6 Advances in Bioremediation
91(3)
5.7 Conclusions and Perspectives
94(1)
References
95(9)
6 Microbial Applications in Organic Acid Production 104(21)
Jyoti Singh Jadaun
Amit K. Rai
Sudhir P. Singh
6.1 Introduction
104(1)
6.2 Glycolic acid (2C)
105(3)
6.3 Acetic Acid (2C)
108(1)
6.4 Pyruvic Acid (3C)
108(1)
6.5 Lactic Acid (3C)
109(1)
6.6 Succinic Acid (4C)
109(1)
6.7 Fumaric Acid (4C)
110(1)
6.8 Malic Acid (4C)
111(1)
6.9 Itaconic Acid (5C)
112(1)
6.10 Gluconic Acid (6C)
113(1)
6.11 Citric Acid (6C)
114(1)
6.12 Kojic Acid (6C)
114(1)
6.13 Muconic and Adipic Acid (C6)
115(2)
6.14 Conclusions and Perspectives
117(1)
Acknowledgments
117(1)
References
117(8)
7 Production of Bioactive Compounds vs. Recombinant Proteins 125(22)
Maria F. Salazar Affonso
Debora Bublitz Anton
Daniel Kuhn
Bruno Dahmer
Camile Wunsch
Veronica Contini
Luis F. Saraiva Macedo Timmers
Claucia F. Volken de Souza
Marcia I. Goettert
Rodrigo G. Ducati
7.1 Introduction
125(1)
7.2 In vitro Cell-Based Assays
126(1)
7.3 Cell Viability Assays
127(1)
7.4 Cell Metabolic Assays
127(1)
7.5 Cell Survival Assays
128(1)
7.6 Cell Transformation Assays
129(1)
7.7 Cell Irritation Assays
129(1)
7.8 Heterologous Expression of Recombinant Proteins of Biomedical Relevance
130(2)
7.9 Lactic Acid Bacteria and the Production of Metabolites with Therapeutic Roles
132(2)
7.10 Preclinical Studies
134(3)
7.10.1 Acute Toxicity
135(1)
7.10.2 Repeated Dose Toxicity
136(1)
7.10.3 Genotoxicity
136(1)
7.10.4 Carcinogenicity
136(1)
7.10.5 Reproductive Toxicity
137(1)
7.11 Computer-aided Drug Design
137(3)
7.12 Conclusions and Perspectives
140(1)
References
140(7)
8 Microbial Production of Antimicrobial and Anticancerous Biomolecules 147(23)
M. Indira
T.C. Venkateswarulu
S. Krupanidhi
K. Abraham Peele
8.1 Introduction
147(1)
8.2 Microbial Sources
148(3)
8.2.1 Bacteria
148(1)
8.2.2 Fungi
149(1)
8.2.3 Actinomycetes
150(1)
8.2.4 Extremophiles
150(1)
8.3 Microbial Bioprospecting Methods
151(2)
8.3.1 Cultural Bioprospecting
151(1)
8.3.2 Nonculturable Microorganism's Bioprospecting
152(1)
8.3.3 In Silico Bioprospecting of Microorganisms
152(1)
8.4 Bioactive Compounds
153(7)
8.4.1 Antibiotics
155(1)
8.4.2 Bacteriocins
155(1)
8.4.3 Biosurfactants
156(1)
8.4.4 Exopolysaccharides
156(1)
8.4.5 Enzymes
157(1)
8.4.6 Biopolymers
158(1)
8.4.7 Bioenergy Compounds
158(1)
8.4.8 Anticancer Compounds
158(2)
8.5 Future Prospects
160(1)
8.6 Conclusions and Perspectives
160(1)
Acknowledgments
161(1)
References
161(9)
9 Microbial Fuel Cells and Plant Microbial Fuel Cells to Degradation of Polluted Contaminants in Soil and Water 170(31)
Chung-Yu Guan
Chang-Ping Yu
9.1 Introduction
170(2)
9.2 History
172(1)
9.3 Electricigens
173(2)
9.3.1 Electricigens of Bacteria
173(2)
9.3.2 Electrocigens of Fungi
175(1)
9.4 Electron Generation and Transfer Mechanisms of Electricigens
175(2)
9.4.1 Electron Generation Mechanism
175(1)
9.4.2 Electron Transfer Mechanism
175(1)
9.4.3 Biofilm Mechanism
176(1)
9.4.4 Electron Shuttle Mechanism
176(1)
9.4.5 Electron Transfer by Exogenous Mediators
176(1)
9.4.6 Microbial Secondary Metabolites for Electron Transfer
177(1)
9.4.7 Oxidation of Reduced Primary Metabolites
177(1)
9.5 Materials
177(5)
9.5.1 Anode Materials
177(1)
9.5.2 Base Materials of the Anode
177(1)
9.5.3 The Modification of Anode Materials
178(1)
9.5.4 Cathode Materials
179(1)
9.5.5 Carbon-Based Materials of Cathodes
179(1)
9.5.6 Non-Carbon-Based Materials
179(1)
9.5.7 Cathode Catalyst
180(1)
9.5.8 Biocathode
181(1)
9.5.9 Separator Materials
181(1)
9.5.9.1 Conventional Separator Materials
181(1)
9.5.9.2 New Separator Materials
181(1)
9.6 Design and Operation of Bioelectrochemical Systems
182(5)
9.6.1 MFC Configuration
182(3)
9.6.1.1 Two-Compartment MFCs
182(2)
9.6.1.2 Air Cathode MFC
184(1)
9.6.1.3 Other Configurations
185(1)
9.6.2 Soil MFC and PMFC Configurations
185(2)
9.6.2.1 Dual-Chamber of Soil MFCs and PMFCs
185(1)
9.6.2.2 Single-Chamber MFCs
186(1)
9.6.2.3 Air-Diffusion Cathode System
186(1)
9.6.2.4 Other Configuration of PMFCs
187(1)
9.7 Performances of the MFCs in Actual Wastewater Treatment
187(2)
9.7.1 Industrial Wastewater
187(1)
9.7.2 Domestic and Livestock Wastewater
188(1)
9.8 Soil MFCs for Soil Remediation
189(1)
9.8.1 Remediation of Organic Contaminated Soils
189(1)
9.8.2 Remediation of Heavy Metal Contaminated Soils
189(1)
9.9 PMFCs for Environmental Remediation
190(1)
9.9.1 PMFCs for Wastewater Treatment
190(1)
9.9.2 PMFCs for Soil Remediation
190(1)
9.10 Prospectives
191(1)
9.11 Conclusions
191(1)
References
192(9)
10 Microalgae-Based UV Protection Compounds 201(24)
Jorge Alberto Vieira Costa
Juliana Botelho Moreira
Gabrielle Guimaraes Izaguirres
Liliane Martins Teixeira
Michele Greque de Morals
10.1 Introduction
201(1)
10.2 UV Radiation
202(1)
10.3 Protection Compounds Induced by UV Radiation
202(4)
10.3.1 Mycosporine-Like Amino Acids
203(1)
10.3.2 Phenolic Compounds
203(1)
10.3.3 Carotenoids
203(1)
10.3.4 Phycocyanin
204(1)
10.3.5 Polyamines
204(1)
10.3.6 Scytonemin
205(1)
10.4 Microalgal Biotechnology for the Production of Photoprotective Compounds
206(3)
10.5 Effects of UV Radiation on the Growth, Morphology, and Production of Lipids, Proteins, and Carbohydrates
209(2)
10.6 Extraction Methods of Photoprotective Compounds
211(2)
10.7 Prospects for Commercial Applications
213(2)
10.8 Conclusion and Perspectives
215(1)
References
215(10)
11 Microorganisms as a Potential Source of Antioxidants 225(17)
Ayerim Hernandez-Almanza
Nathiely Ramirez-Guzman
Gloria A. Martinez-Medina
Araceli Loredo-Trevino
Deepak Kumar Verma
Cristobal N. Aguilar
11.1 Introduction
225(1)
11.2 Antioxidant-Producing Microorganisms
225(1)
11.3 Production of Some Microbial Antioxidants and Their Action Mechanisms
226(4)
11.3.1 Peptides
226(1)
11.3.2 Pigments
227(2)
11.3.3 Polyphenols
229(1)
11.4 Extraction and Purification of Microbial Antioxidants
230(1)
11.4.1 Extraction of Microbial Antioxidants
230(1)
11.4.2 Purification of Microbial Antioxidants
231(1)
11.5 Evaluation of Antioxidant Activity
231(4)
11.5.1 Classical Methods
232(2)
11.5.2 Cellular Methods
234(1)
11.6 Conclusions and Perspectives
235(1)
References
236(6)
12 Microbial Production of Biomethane from Digested Waste and Its Significance 242(12)
Arun Kumar Pal
Vijay Tripathi
Prashant Kumar
Pradeep Kumar
12.1 Introduction
242(1)
12.2 Methane
243(2)
12.2.1 Source of Methane
243(2)
12.2.1.1 Industry
244(1)
12.2.1.2 Agriculture
244(1)
12.2.1.3 Waste
244(1)
12.2.2 Biomethane
245(1)
12.3 Types of Waste
245(3)
12.3.1 Biological Waste
247(1)
12.3.2 Household Waste
247(1)
12.3.3 Agricultural Waste
248(1)
12.4 Digestion Processes of Organic Wastes
248(2)
12.4.1 Hydrolysis of Organic Waste
248(1)
12.4.2 Acidogenesis of Hydrolyzed Matter
249(1)
12.4.3 Acetogenesis
249(6)
12.4.3.1 Methanogenesis
250(1)
12.5 Conclusions and Perspectives
250(1)
Acknowledgments
250(1)
Conflicts of Interest
250(1)
References
250(4)
13 Enzymatic Biosynthesis of Carbohydrate Biopolymers and Uses Thereof 254(24)
Manisha Sharma
Jyoti Singh Jadaun
Santosh Kumar Upadhyay
Sudhir P. Singh
13.1 Introduction
254(1)
13.2 Dextran
255(1)
13.2.1 Mechanism of Dextran Production
255(1)
13.2.2 Production of Dextran at Industrial Level
255(1)
13.2.3 Applications of Dextran
256(1)
13.3 Chitin and Chitosan
256(4)
13.3.1 Biological Extraction of Chitin
257(2)
13.3.1.1 Biosynthesis of Chitin and Chitosan
257(1)
13.3.1.2 Chitin and Chitosan-Producing Fungi
257(1)
13.3.1.3 Enzymatic Deproteinization
257(2)
13.3.1.4 Fermentation
259(1)
13.3.1.5 Enzymatic Deacetylation
259(1)
13.3.2 Applications of Chitin and Chitosan
259(1)
13.4 Xanthan Gum
260(1)
13.4.1 Xanthan Gum Production
260(1)
13.4.2 Microbial Production
261(1)
13.4.3 Applications of Xanthan Gum
261(1)
13.5 Bacterial Cellulose
261(2)
13.5.1 Biosynthetic Pathway for Cellulose Production
261(1)
13.5.2 Cellulose Precursor
262(1)
13.5.3 Microbial Source for Cellulose Production
262(1)
13.5.4 Applications of Cellulose
263(1)
13.6 Levan
263(3)
13.6.1 Levan Producing Organism
264(1)
13.6.2 Mechanism for Levan Biosynthesis
264(1)
13.6.3 Strategies for Levan Production
265(1)
13.6.4 Applications of Levan
265(1)
13.7 Conclusions and Perspectives
266(1)
Acknowledgments
266(1)
References
266(12)
14 Polysaccharides from Marine Microalgal Sources 278(17)
Ratih Pangestuti
Evi Amelia Siahaan
Yanuariska Putra
Puji Rahmadi
14.1 Introduction
278(1)
14.2 Polysaccharides from Marine Microalgae
279(3)
14.2.1 Subcritical Water Hydrolysis
280(1)
14.2.2 Ultrasonic-Aided Extraction
281(1)
14.2.3 Microwave-Assisted Extraction
282(1)
14.2.4 Enzyme-Assisted Extraction
282(1)
14.3 Optimization of Microalgae Culture Conditions
282(3)
14.4 Bioactivities and Potential Health Benefits
285(3)
14.4.1 Antiviral Activity
285(1)
14.4.2 Antioxidant
286(1)
14.4.3 Anticancer
287(1)
14.4.4 Immunomodulatory
288(1)
14.5 Conclusions and Perspectives
288(1)
Acknowledgment
288(1)
References
289(6)
15 Microbial Production of Bioplastic: Current Status and Future Prospects 295(24)
Karishma Seem
15.1 Introduction
295(2)
15.2 General Structure of PHA
297(1)
15.3 Physical Properties
298(1)
15.4 Biodegradability of PHA
298(1)
15.5 Biosynthesis of PHA
299(1)
15.6 Challenges of Scaling Up of PHA Production on an Industrial Scale
300(4)
15.6.1 Renewable Sources as Feedstock for PHA Production
300(2)
15.6.1.1 Food Processing and Agricultural Industries Discharge
300(1)
15.6.1.2 Glycerol
301(1)
15.6.1.3 Agro-Industrial Oily Wastes
301(1)
15.6.2 Cyanobacteria
302(1)
15.6.3 Bacteria from Extreme Niches
303(3)
15.6.3.1 Halophilic Bacteria
303(1)
15.6.3.2 Thermophiles for PHA
304(1)
15.6.3.3 Psycrophiles for PHA
304(1)
15.7 Co-synthesis of PHA with Value-Added Products
304(1)
15.8 Blends of PHA
305(1)
15.9 Applications of PHA
306(3)
15.9.1 Biomedical Applications
306(1)
15.9.2 Soft Tissue Implants
307(1)
15.9.3 Esophagus, Pericardial Patches
307(1)
15.9.4 Heart Valve Tissue Engineering
307(1)
15.9.5 Nerve Regeneration
308(1)
15.9.6 Drug Delivery System
308(1)
15.10 Conclusions and Perspectives
309(1)
References
309(10)
16 Microbial Enzymes for the Mineralization of Xenobiotic Compounds 319(18)
Ankita Chattel-fee
Pritha Chakraborty
Jayanthi Abraham
16.1 Introduction
319(1)
16.2 Major Pollutants and Their Removal with White-Rot Fungi
320(3)
16.2.1 Pesticides
320(1)
16.2.2 Polychlorinated Biphenyls
321(1)
16.2.3 Polycyclic Aromatic Hydrocarbons
321(1)
16.2.4 Synthetic Dyes
322(1)
16.2.5 Synthetic Polymers
322(1)
16.2.6 Phenolic Compounds
322(1)
16.2.7 Petroleum Hydrocarbons
323(1)
16.3 Enzyme System of White-Rot Fungi
323(7)
16.3.1 Laccase
323(5)
16.3.1.1 Mechanisms
327(1)
16.3.2 Lignin Peroxidase
328(1)
16.3.3 Manganese Peroxidase
329(1)
16.3.3.1 Mechanism
329(1)
16.3.4 Other Enzymes
330(1)
16.4 Molecular Aspect
330(1)
16.5 Conclusions and Perspectives
331(1)
Acknowledgement
331(1)
Compliance with Ethical Guidelines
332(1)
References
332(5)
17 Functional Oligosaccharides and Microbial Sources 337(20)
S.A. Belorkar
17.1 Introduction
337(2)
17.1.1 What Are Functional Foods? All You Need to Know
338(1)
17.2 Inulin and Oligofructose: The Preliminary Functional Oligosaccharides
339(1)
17.3 GRAS and FOSHU Status
339(1)
17.4 Conventional and Upcoming Oligosaccharides
339(1)
17.5 Microbes and Functional Oligosaccharides
340(1)
17.6 Arabinoxylo-Oligosaccharides
340(1)
17.7 Sources and Properties
341(1)
17.8 Approaches for AXOS Production
341(1)
17.9 Isomaltooligosaccharides
342(1)
17.10 Sources and Properties
343(1)
17.11 Production of IMO
344(1)
17.12 Approaches to Improve IMO Production
344(1)
17.13 Lactosucrose
345(2)
17.14 Novel Approaches in Lactosucrose Preparation
347(1)
17.15 Xylooligosaccharides
347(1)
17.16 Occurrence and Properties
348(1)
17.17 Approaches to Improve the Efficiency of XOS
349(1)
17.18 Conclusions and Perspectives
349(1)
References
350(7)
18 Algal Biomass and Biofuel Production 357(20)
Suman Sanju
Aditi Thakur
Pragati Misra
Pradeep Kumar Shukla
18.1 Introduction
357(1)
18.2 Biofuels
357(2)
18.2.1 First-Generation Biofuels
358(1)
18.2.2 Second-Generation Biofuels
358(1)
18.2.3 Third-Generation Biofuels
359(1)
18.3 Algae: The Biomass
359(1)
18.4 Microalgae as Biofuel Biomass
360(2)
18.5 Microalgae Culture Systems
362(2)
18.5.1 Open Algal Systems
362(1)
18.5.2 Closed Algal Systems
363(1)
18.5.3 Hybrid Algal Systems
363(1)
18.6 Microalgae Harvesting
364(1)
18.7 Processing and Extraction of Components
364(1)
18.8 Biofuel Conversion Processes
364(4)
18.8.1 Transesterification
365(1)
18.8.2 Biochemical Methods
366(1)
18.8.2.1 Fermentation
366(1)
18.8.2.2 Anaerobic Digestion
366(1)
18.8.3 Thermochemical Conversions
367(1)
18.8.3.1 Gasification
367(1)
18.8.3.2 Pyrolysis
367(1)
18.8.3.3 Liquefaction
368(1)
18.8.4 Direct Combustion
368(1)
18.9 Microalgal Biofuels
368(3)
18.9.1 Biodiesel
368(1)
18.9.2 Bioethanol
369(1)
18.9.3 Biogas
370(1)
18.9.4 Bio-Oil and Bio-Syngas
370(1)
18.9.5 Biohydrogen
371(1)
18.10 Conclusions and Perspectives
371(1)
References
371(6)
19 Microbial Source of Insect-Toxic Proteins 377(27)
Tripti Yadav
Geetanjali Mishra
19.1 Introduction
377(1)
19.2 Fungi
378(6)
19.3 Bacteria
384(2)
19.4 Virus
386(1)
19.5 Conclusions and Perspectives
387(1)
References
388(16)
20 Recent il-ends in Conventional and Nonconventional Bioprocessing 404(14)
Saswata Goswami
Keyur Royal
Anjana
Priyanka Bhat
20.1 Advances in Conventional Bioprocessing
404(5)
20.1.1 The Stirred-Tank Bioreactor Systems
407(2)
20.2 Nonconventional Bioprocessing
409(4)
20.2.1 Wave Bioreactors
409(1)
20.2.2 Orbital Shaken Bioreactors
410(1)
20.2.3 Stirred Tank Bioreactors
411(2)
20.3 Brief Note on the Recent Trends in Downstream Bioprocessing
413(1)
20.4 Perfusion Culture for Bioprocess Intensification
413(3)
20.5 Conclusions and Perspectives
416(1)
References
416(2)
Index 418
Sudhir P. Singh, Scientist-D, Biotechnology & Synthetic Biology, Center of Innovative and Applied Bioprocessing, Mohali, India. He has been working in the field of molecular biology and biotechnology for more than a decade. His current research is focused on gene mining and biocatalyst engineering for the development of approaches for transformation of agro-industrial residues and under- or un-utilized side-stream biomass into value-added bio-products.

Santosh Kumar Upadhyay, Assistant Professor, Department of Botany, Panjab University, Chandigarh, India. He has been working in the field of plant biotechnology for more than 14 years. His current research focuses on functional genomics.