Atjaunināt sīkdatņu piekrišanu

E-grāmata: Biosignal and Medical Image Processing

, (Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA)
  • Formāts: 630 pages
  • Izdošanas datums: 30-Sep-2021
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781000535792
  • Formāts - EPUB+DRM
  • Cena: 181,58 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 630 pages
  • Izdošanas datums: 30-Sep-2021
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781000535792

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Written specifically for biomedical engineers, Biosignal and Medical Image Processing, Third Edition provides a complete set of signal and image processing tools, including diagnostic decision-making tools, and classification methods. Thoroughly revised and updated, it supplies important new material on nonlinear methods for describing and classifying signals, including entropy-based methods and scaling methods. A full set of PowerPoint slides covering the material in each chapter and problem solutions is available to instructors for download.

See Whats New in the Third Edition:





Two new chapters on nonlinear methods for describing and classifying signals. Additional examples with biological data such as EEG, ECG, respiration and heart rate variability Nearly double the number of end-of-chapter problems MATLAB® incorporated throughout the text Data "cleaning" methods commonly used in such areas as heart rate variability studies







The text provides a general understanding of image processing sufficient to allow intelligent application of the concepts, including a description of the underlying mathematical principals when needed. Throughout this textbook, signal and image processing concepts are implemented using the MATLAB® software package and several of its toolboxes.

The challenge of covering a broad range of topics at a useful, working depth is motivated by current trends in biomedical engineering education, particularly at the graduate level where a comprehensive education must be attained with a minimum number of courses. This has led to the development of "core" courses to be taken by all students. This text was written for just such a core course. It is also suitable for an upper-level undergraduate course and would also be of value for students in other disciplines that would benefit from a working knowledge of signal and image processing.

Recenzijas

"An excellent review of the actual trendiest techniques in signal processing with a very clear (and simplified) description of their capabilities in signal and image analysis. Matlab examples are an excellent addition to provide students with capabilities to understand better how the techniques work" Enrique Nava Baro, PhD, University of MĮlaga, Spain

"The book is a welcome addition to the teaching literature for biomedical engineering, building on the previous editions friendly approach to introducing the material. This makes it particularly suitable for biomedical engineering, a field in which students come from a variety of backgrounds, and where familiarity of the fundamentals of electrical engineering cannot be assumed." David A. Clifton, University of Oxford, UK

Introduction. Basic Concepts. Spectral Analysis: Classical Methods.
Digital Filters. Spectral Analysis: Modern Techniques. TimeFrequency
Analysis. Wavelet Analysis. Advanced Signal Processing Techniques: Optimal
and Adaptive Filters. Multivariate Analyses: Principal Component Analysis and
Independent Component Analysis. Fundamentals of Imaging Processing: MATLAB
Image Processing Toolbox. Spectral Analysis: The Fourier Transform. Image
Segmentation. Image Reconstruction. Classification I: Linear Discriminant
Analysis and Support Vector Machines. Adaptive Neural Nets.
John L. Semmlow (Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA) (Author) , Benjamin Griffel (Author)