Atjaunināt sīkdatņu piekrišanu

Biotechnology for Zero Waste: Emerging Waste Management Techniques [Hardback]

Edited by (NJIT, Dept of Chemistry and Environmental Sciences), Edited by
  • Formāts: Hardback, 624 pages, height x width x depth: 252x175x36 mm, weight: 1361 g
  • Izdošanas datums: 16-Feb-2022
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527348980
  • ISBN-13: 9783527348985
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 208,10 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 624 pages, height x width x depth: 252x175x36 mm, weight: 1361 g
  • Izdošanas datums: 16-Feb-2022
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527348980
  • ISBN-13: 9783527348985
Citas grāmatas par šo tēmu:

The use of biotechnology to minimize waste and maximize resource valorization 

In Biotechnology for Zero Waste: Emerging Waste Management Techniques, accomplished environmental researchers Drs. Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari deliver a robust exploration of the role of biotechnology in reducing waste and creating a zero-waste environment. The editors provide resources covering perspectives in waste management like anaerobic co-digestion, integrated biosystems, immobilized enzymes, zero waste biorefineries, microbial fuel cell technology, membrane bioreactors, nano biomaterials, and more.  

Ideal for sustainability professionals, this book comprehensively sums up the state-of-the-art biotechnologies powering the latest advances in zero-waste strategies. The renowned contributors address topics like bioconversion and biotransformation and detail the concept of the circular economy. Biotechnology for Zero Waste effectively guides readers on the path to creating sustainable products from waste. The book also includes: 

  • A thorough introduction to modern perspectives on zero waste drives, including anaerobic co-digestion as a smart approach for enhances biogas production 
  • Comprehensive explorations of bioremediation for zero waste, biological degradation systems, and bioleaching and biosorption of waste 
  • Practical discussions of bioreactors for zero waste and waste2energy with biotechnology 
  • An in-depth examination of emerging technologies, including nanobiotechnology for zero waste and the economics and commercialization of zero waste biotechnologies 

Perfect for process engineers, natural products, environmental, soil, and inorganic chemists, Biotechnology for Zero Waste: Emerging Waste Management Techniques will also earn a place in the libraries of food technologists, biotechnologists, agricultural scientists, and microbiologists. 

Foreword xxvii
Preface xxix
Part I Modern Perspective of Zero Waste Drives
1(46)
1 Anaerobic Co-digestion as a Smart Approach for Enhanced Biogas Production and Simultaneous Treatment of Different Wastes
3(16)
S. Bharathi
B. J. Yogesh
1.1 Introduction
3(2)
1.1.1 Biodegradation - Nature's Art of Recycling
3(1)
1.1.2 Anaerobic Digestion (AD)
4(1)
1.1.3 Sustainable Biomethanation
5(1)
1.2 Anaerobic Co-digestion (AcD)
5(8)
1.2.1 Zero Waste to Zero Carbon Emission Technology
6(1)
1.2.2 Alternative Feedstocks
6(2)
1.2.3 Microbiological Aspects
8(1)
1.2.4 Strategies for Inoculum Development
8(1)
1.2.5 Real-Time Monitoring of AcD
9(1)
1.2.5.1 The pH Fluctuations
10(1)
1.2.5.2 Carbon-Nitrogen Content
11(1)
1.2.5.3 Temperature
11(1)
1.2.5.4 Volatile Fatty Acids
12(1)
1.2.5.5 Ammonia
12(1)
1.2.5.6 Organic Loading Rate
12(1)
1.3 Digester Designs
13(1)
1.4 Digestate/Spent Slurry
14(1)
1.5 Conclusion
15(4)
References
15(4)
2 Integrated Approaches for the Production of Biodegradable Plastics and Bioenergy from Waste
19(14)
Chandan Kumar Sahu
Mukta Hugar
Ravi Kumar Kadeppagari
2.1 Introduction
19(1)
2.2 Food Waste for the Production of Biodegradable Plastics and Biogas
19(3)
2.2.1 Biodegradable Plastics from Food Waste
20(1)
2.2.2 Food Waste and Bioenergy
21(1)
2.2.2.1 Ethanol from Food Waste
21(1)
2.2.2.2 Food Waste to Biohydrogen
21(1)
2.2.2.3 Production of Biogas from Food Waste
21(1)
2.3 Dairy and Milk Waste for the Production of Biodegradable Plastics and Biogas
22(1)
2.3.1 Biodegradable Plastics and Dairy Waste
22(1)
2.3.2 PHB Production in Fermenter
22(1)
2.3.3 Bioenergy from Dairy and Milk Waste
22(1)
2.4 Sugar and Starch Waste for the Production of Biodegradable Plastics and Biogas
23(2)
2.4.1 Sugar Waste
23(1)
2.4.1.1 Sugar Waste and PHA
23(1)
2.4.1.2 Bioenergy from Sugar Waste
24(1)
2.4.2 Starch Waste
24(1)
2.4.2.1 Biodegradable Plastics and Starch Waste
25(1)
2.4.2.2 Bioenergy from Starch Waste
25(1)
2.5 Wastewater for the Production of Biodegradable Plastics and Bioenergy
25(2)
2.5.1 Biodegradable Plastics from Wastewater
26(1)
2.5.1.1 Production of PHA from Wastewater
26(1)
2.5.1.2 Production of PHB
26(1)
2.5.2 Production of Bioenergy
26(1)
2.6 Integrated Approaches for the Production of Biodegradable Plastics and Bioenergy from Waste
27(1)
2.7 Conclusions
28(5)
References
28(5)
3 Immobilized Enzymes for Bioconversion of Waste to Wealth
33(14)
Angitha Balan
Vaisiri V. Murthy
Ravi Kumar Kadeppagari
3.1 Introduction
33(1)
3.2 Enzymes as Biocatalysts
34(1)
3.3 Immobilization of Enzymes
35(3)
3.3.1 Enzyme Immobilization Methods
35(1)
3.3.1.1 Adsorption
35(1)
3.3.1.2 Covalent Bonding
36(1)
3.3.1.3 Affinity Immobilization
36(1)
3.3.1.4 Entrapment
36(1)
3.3.2 Advantages of Immobilizing Enzymes
37(1)
3.3.2.1 Stabilization
37(1)
3.3.2.2 Flexibility of Bioreactor Design
37(1)
3.3.2.3 Reusability and Recovery
38(1)
3.4 Bioconversion of Waste to Useful Products by Immobilized Enzymes
38(3)
3.4.1 Utilization of Protein Wastes
39(1)
3.4.2 Carbohydrates as Feedstock
39(1)
3.4.3 Utilization of Polysaccharides
40(1)
3.4.4 Lipids as Substrates
41(1)
3.5 Applications of Nanotechnology for the Immobilization of Enzymes and Bioconversion
41(2)
3.6 Challenges and Opportunities
43(4)
Acknowledgments
43(1)
References
44(3)
Part II Bioremediation for Zero Waste
47(64)
4 Bioremediation of Toxic Dyes for Zero Waste
49(18)
Venkata Krishna Bayineni
4.1 Introduction
49(1)
4.2 Background to Dye(s)
50(1)
4.3 The Toxicity of Dye(s)
50(1)
4.4 Bioremediation Methods
51(12)
4.4.1 Types of Approaches: Ex situ and In situ
51(1)
4.4.2 Microbial Remediation
52(1)
4.4.2.1 Aerobic Treatment
52(1)
4.4.2.2 Anaerobic Treatment
52(1)
4.4.2.3 Aerobic-Anaerobic Treatment
52(1)
4.4.3 Decolorization and Degradation of Dyes by Fungi
53(1)
4.4.4 Decolorization and Degradation of Dyes by Yeast
53(1)
4.4.5 Decolorization and Degradation of Dyes by Algae
53(1)
4.4.6 Bacterial Decolorization and Degradation of Dyes
54(1)
4.4.6.1 Factors Affecting Dye Decolorization and Degradation
54(4)
4.4.7 Microbial Decolorization and Degradation Mechanisms
58(1)
4.4.7.1 Biosorption
58(1)
4.4.7.2 Enzymatic Degradation
58(1)
4.4.8 Decolorization and Degradation of Dyes by Plants (Phytoremediation)
58(2)
4.4.8.1 Plant Mechanism for Treating Textile Dyes and Wastewater
60(1)
4.4.8.2 Advantages of Phytoremediation
60(1)
4.4.9 Integrated Biological, Physical, and Chemical Treatment Methods
60(1)
4.4.10 RDNA Technology
60(2)
4.4.11 Enzyme-Mediated Dye Removal
62(1)
4.4.12 Immobilization Techniques
62(1)
4.5 Conclusion
63(4)
References
63(4)
5 Bioremediation of Heavy Metals
67(16)
Tanmoy Paul
Nimai C. Sana
5.1 Introduction
67(1)
5.2 Ubiquitous Heavy Metal Contamination - The Global Scenario
68(1)
5.3 Health Hazards from Heavy Metal Pollution
69(2)
5.4 Decontaminating Heavy Metals - The Conventional Strategies
71(1)
5.5 Bioremediation - The Emerging Sustainable Strategy
72(6)
5.5.1 Intervention of Metal Contamination by Microbial Adaptation
72(2)
5.5.1.1 Genetic Circuitry Involved in Microbial Bioremediation
74(1)
5.5.1.2 Different Heavy Metal-Resistant Mechanisms
74(1)
5.5.2 Plant-Assisted Bioremediation (Phytoremediation)
75(2)
5.5.3 Algae-Assisted Bioremediation (Phycoremediation)
77(1)
5.5.4 Fungi-Assisted Bioremediation (Mycoremediation)
77(1)
5.6 Conclusion
78(5)
References
79(4)
6 Bioremediation of Pesticides Containing Soil and Water
83(12)
Veena S. More
Allwin Ebinesar Jacob Samuel Sehar
Anagha P. Sheshadri
Sangeetha Rajanna
Anantharaju Kurupalya Shivram
Aneesa Fasim
Archana Rao
Prakruthi Acharya
Sikandar Mulla
Sunil S. More
6.1 Introduction
83(1)
6.2 Pesticide Biomagnification and Consequences
84(1)
6.3 111 Effects of Biomagnification
84(1)
6.4 Bioremediation
85(1)
6.5 Methods Used in Bioremediation Process
86(2)
6.5.1 In Situ Method
87(1)
6.5.1.1 Bioaugmentation
87(1)
6.5.1.2 Bioventing
87(1)
6.5.1.3 Biosparging
87(1)
6.5.1.4 Biostimulation
87(1)
6.5.2 Ex Situ Methods
87(1)
6.5.2.1 Composting
87(1)
6.5.2.2 Land farming
88(1)
6.5.2.3 Biopiles
88(1)
6.5.2.4 Bioreactors
88(1)
6.6 Bioremediation Process Using Biological Mediators
88(2)
6.6.1 Bacterial Remediation
88(1)
6.6.2 Fungal Remediation
89(1)
6.6.3 Phytoremediation
89(1)
6.7 Factors Affecting Bioremediation
90(1)
6.7.1 Soil Type and Soil Moisture
90(1)
6.7.2 Oxygen and Nutrients
90(1)
6.7.3 Temperature and pH
90(1)
6.7.4 Organic Matter
91(1)
6.8 Future Perspectives
91(4)
References
91(4)
7 Bioremediation of Plastics and Polythene in Marine Water
95(16)
Tarun Gangar
Sanjukta Patra
7.1 Introduction
95(1)
7.2 Plastic Pollution: A Threat to the Marine Ecosystem
96(1)
7.3 Micro- and Nanoplastics
96(3)
7.3.1 Microplastics
97(1)
7.3.1.1 Toxicity of Microplastics
98(1)
7.3.2 Nanoplastics
99(1)
7.4 Microbes Involved in the Degradation of Plastic and Related Polymers
99(2)
7.4.1 Biodegradation of Plastic
99(1)
7.4.1.1 Polyethylene (PE)
100(1)
7.4.1.2 Polyethylene Terephthalate (PET)
101(1)
7.4.1.3 Polystyrene (PS)
101(1)
7.5 Enzymes Responsible for Biodegradation
101(1)
7.6 Mechanism of Biodegradation
102(2)
7.6.1 Formation of Biofilm
102(1)
7.6.2 Biodeterioration
103(1)
7.6.3 Biofragmentation
103(1)
7.6.4 Assimilation
103(1)
7.6.5 Mineralization
104(1)
7.7 Biotechnology in Plastic Bioremediation
104(2)
7.8 Future Perspectives: Development of More Refined Bioremediation Technologies as a Step Toward Zero Waste Strategy
106(5)
Acknowledgment
106(1)
Conflict of Interest
107(1)
References
107(4)
Part III Biological Degradation Systems
111(60)
8 Microbes and their Consortia as Essential Additives for the Composting of Solid Waste
113(10)
Mansi Rastogi
Sheetal Barapatre
8.1 Introduction
113(1)
8.2 Classification of Solid Waste
113(1)
8.3 Role of Microbes in Composting
114(2)
8.4 Effect of Microbial Consortia on Solid Waste Composting
116(3)
8.5 Benefits of Microbe-Amended Compost
119(4)
References
119(4)
9 Biodegradation of Plastics by Microorganisms
123(20)
Md. Anisur R. Mazumder
Md. Fahad Jubayer
Thottiam V. Ranganathan
9.1 Introduction
123(1)
9.2 Definition and Classification of Plastics
124(4)
9.2.1 Definition of Plastic
124(1)
9.2.2 Classification
125(1)
9.2.2.1 Based on Biodegradability
125(1)
9.2.2.2 Based on Structure and Thermal Properties
126(1)
9.2.2.3 Characteristics of Different Biodegradable Plastics
126(2)
9.3 Biodegradation of Plastics
128(8)
9.3.1 General Outline
128(1)
9.3.2 Biodegradation Phases and End Products
129(1)
9.3.2.1 Aerobic Biodegradation
129(1)
9.3.2.2 Anaerobic Biodegradation
130(1)
9.3.3 Mechanism of Microbial Degradation of Plastic
130(1)
9.3.4 Factors Affecting Biodegradation of Plastics
131(1)
9.3.5 Microorganisms Involved in the Biodegradation Process
132(1)
9.3.6 Enzymes Involved in the Plastic Biodegradation
133(2)
9.3.6.1 Cutinases (EC 3.1.1.74)
135(1)
9.3.6.2 Lipases (EC 3.1.1.3)
135(1)
9.3.6.3 Carboxylesterases(EC3.1.1.1)
135(1)
9.3.6.4 Proteases
135(1)
9.3.6.5 Lignin Modifying Enzymes
136(1)
9.4 Current Trends and Future Prospects
136(7)
List of Abbreviations
137(1)
References
138(5)
10 Enzyme Technology for the Degradation of Lignocellulosic Waste
143(12)
Swarrna Haldar
Soumitra Banerjee
10.1 Introduction
143(1)
10.2 Enzymes Required for the Degradation of Lignocellulosic Waste
144(6)
10.2.1 Degradation of Cellulose
144(1)
10.2.1.1 Microbial Production of Cellulase
144(1)
10.2.1.2 Enzymes Responsible for Cellulose Degradation
145(1)
10.2.1.3 Physical Pre-treatments to Break down Cellulose
145(1)
10.2.2 Degradation of Hemicellulose
146(1)
10.2.2.1 Enzymes Responsible for Degradation of Hemicellulose
146(1)
10.2.2.2 Microbial Production of Hemicellulases
147(1)
10.2.2.3 Physical Pre-treatments to Break down Hemicellulose
147(1)
10.2.3 Degradation of Lignin
148(1)
10.2.3.1 Microbial Production of Lignin Degrading Enzymes
148(1)
10.2.3.2 Enzymes Responsible for the Degradation of Lignin
148(1)
10.2.4 Degradation of Pectin
149(1)
10.3 Utilizing Enzymes for the Degradation of Lignocellulosic Waste
150(1)
10.4 Conclusion
150(5)
References
150(5)
11 Usage of Microalgae: A Sustainable Approach to Wastewater Treatment
155(16)
Kumudini B. Satyan
Michael V. L. Chhandama
Dhanya V. Ranjit
11.1 Introduction
155(3)
11.1.1 Microalgae
156(1)
11.1.2 Composition of Wastewater
157(1)
11.2 Microalgae for Wastewater Treatment
158(4)
11.2.1 Biological Oxygen Demand (BOD)
159(1)
11.2.2 Chemical Oxygen Demand (COD)
159(1)
11.2.3 Nutrients (Nitrogen and Phosphorus)
160(1)
11.2.4 Heavy Metals
160(1)
11.2.5 Xenobiotic Compounds
161(1)
11.3 Cultivation of Microalgae in Wastewater
162(2)
11.3.1 Factors Affecting the Growth of Microalgae
162(1)
11.3.1.1 TN:TP Ratio
162(1)
11.3.1.2 Ph
162(1)
11.3.1.3 Light
162(1)
11.3.2 Algal Culture Systems
163(1)
11.3.2.1 Open Systems
163(1)
11.3.2.2 Closed Systems
164(1)
11.4 Algae as a Source of Bioenergy
164(2)
11.4.1 Biodiesel from Microalgae
165(1)
11.4.2 Bioethanol from Microalgae
165(1)
11.4.3 Biomethane from Microalgae
165(1)
11.4.4 Hydrogen Production
165(1)
11.4.5 Microbial Fuel Cells
166(1)
11.5 Conclusion
166(5)
References
166(5)
Part IV Bioleaching and Biosorption of Waste: Approaches and Utilization
171(48)
12 Microbes and Agri-Food Waste as Novel Sources of Biosorbents
173(16)
Simranjeet Singh
Praveen C. Ramamurthy
Vijay Kumar
Dhriti Kapoor
Vaishali Dhaka
Joginder Singh
12.1 Introduction
173(2)
12.2 Conventional Methods for Agri-Food Waste Treatment
175(1)
12.3 Application of the Biosorption Processes
176(2)
12.3.1 Removal of Inorganic Pollutants
176(1)
12.3.2 Removal of Organic Pollutants
177(1)
12.4 Use of Genetically Engineered Microorganisms and Agri-Food Waste
178(1)
12.5 Biosorption Potential of Microbes and Agri-Food Waste
179(1)
12.6 Modification, Parameter Optimization, and Recovery
180(2)
12.6.1 Modification
181(1)
12.6.2 Parameters
182(1)
12.6.3 Recovery
182(1)
12.7 Immobilization of Biosorbent
182(1)
12.8 Conclusions
183(6)
References
185(4)
13 Biosorption of Heavy Metals and Metal-Complexed Dyes Under the Influence of Various Physicochemical Parameters
189(18)
Allwin Ebinesar Jacob Samuel Sehar
Veena S. More
Amrutha Gudibanda Ramesh
Sunil S. More
13.1 Introduction
189(2)
13.2 Mechanisms Involved in Biosorption of Toxic Heavy Metal Ions and Dyes
191(1)
13.3 Chemistry of Heavy Metals in Water
191(1)
13.4 Chemistry of Metal-Complexed Dyes
192(1)
13.5 Microbial Species Used for the Removal of Metals and Metal-Complexed Dyes
192(3)
13.5.1 Biosorption of Zinc Using Bacteria
192(1)
13.5.2 Biosorption of Heavy Metals by Algae
193(1)
13.5.3 Removal of Toxic Heavy Metals by Fungi
194(1)
13.5.4 Biosorption of Heavy Metals Using Yeast
194(1)
13.6 Industrial Application on the Biosorption of Heavy Metals
195(3)
13.6.1 Biosorption of Heavy Metals Using Fluidized Bed Reactor
195(2)
13.6.2 Biosorption of Heavy Metals by Using Packed Bed Reactors
197(1)
13.7 Biosorption of Reactive Dyes
198(1)
13.8 Metal-Complexed Dyes
199(1)
13.9 Biosorption of Metal-Complexed Dyes
200(3)
13.10 Conclusion
203(4)
References
203(4)
14 Recovery of Precious Metals from Electronic and Other Secondary Solid Waste by Bioleaching Approach
207(12)
Dayanand Peter
Leonard Shruti Arputha Sakayaraj
Thottiam Vasudevan Ranganathan
14.1 Introduction
207(1)
14.2 What Is Bioleaching?
208(2)
14.2.1 Mechanism of Bioleaching
208(1)
14.2.2 Industrial Processes of Bioleaching
209(1)
14.2.3 Factors Affecting Bioleaching
209(1)
14.2.4 Advantages of Bioleaching Over Other Methods
210(1)
14.2.5 Limitation of Bioleaching Over Other Methods
210(1)
14.3 E-Waste, What Are They?
210(2)
14.3.1 E-Waste Production Scale
211(1)
14.3.2 Pollution Caused by E-Waste
211(1)
14.3.3 General Methods of E-Waste Treatment
212(1)
14.4 Role of Microbes in Bioleaching of E-Waste
212(2)
14.4.1 Bacteria
212(1)
14.4.2 Fungi
213(1)
14.4.3 Actinobacteria and Cyanogenic Organisms
213(1)
14.5 Application of Bioleaching for Recovery of Individual Metals
214(1)
14.5.1 Gold
214(1)
14.5.2 Silver
215(1)
14.5.3 Copper
215(1)
14.5.4 Nickel
215(1)
14.6 Large-Scale Bioleaching of E-Waste
215(1)
14.7 Future Aspects
215(4)
List of Abbreviations
216(1)
References
216(3)
Part V Bioreactors for Zero Waste
219(44)
15 Photobiological Reactors for the Degradation of Harmful Compounds in Wastewaters
221(20)
Naveen B. Kitaru
Netluri K. Durga Devi
Kondepati Haritha
15.1 Introduction
221(1)
15.2 Photobiological Agents and Methods Used in PhotoBiological Reactors
222(16)
15.2.1 Microbes Acting as Photobiological Agents in Various Photobiological Reactors for the Remediation of Wastewater
222(1)
15.2.1.1 Olive Mill Wastewater Treatment by Immobilized Cells of Aspergillus niger
222(2)
15.2.1.2 Isolation of Alkane-Degrading Bacteria from Petroleum Tank Wastewater
224(1)
15.2.1.3 Development of Microbubble Aerator for Wastewater Treatment by Means of Aerobic Activated Sludge
224(1)
15.2.1.4 Wastewater Produced from an Oilfield and Incessant Treatment with an Oil-Degrading Bacterium
225(1)
15.2.1.5 Pepper Mild Mottle Virus (a Plant Pathogen) as an Apt to Enteric Virus
225(1)
15.2.1.6 Cyanobacteria as a Bio-resource in Making of Bio-fertilizer and Biofuel from Wastewaters
226(1)
15.2.1.7 Bio-sorption of Copper and Lead Ions by Surplus Beer Yeast
226(1)
15.2.1.8 Organization of Lipid-Based Biofuel Production with Waste Treatment Using Oleaginous Bacteria
227(1)
15.2.1.9 Anaerobic Degradation of Textile Dye Bath Effluent Using Halomonas Species
228(1)
15.2.1.10 Laccase Production on Eichhornia crassipes Biomass
229(1)
15.2.1.11 Algae-Bacteria Interaction in Photo-Bioreactors
230(1)
15.2.1.12 Photo Sequence Batch Reactor
230(1)
15.2.1.13 Detection of sull and sul2 Genes in Sulfonamide-Resistant Bacteria (SRB) from Sewage, Aquaculture Sources, Animal Wastes, and Hospital Wastewater
231(1)
15.2.1.14 Photosynthetic Bacteria as a Potential Alternative to Meet Sustainable Wastewater Treatment Requirement
231(1)
15.2.1.15 Anaerobic Fermentation for the Production of Short-Chain Fatty Acids by Acidogenic Bacteria
232(1)
15.2.2 Use of Photolytic and Photochemical Methods in Various Photobiological Reactors for Treatment of Wastewater
233(1)
15.2.2.1 Photo-Enhanced Degradation of Contaminants of Emerging Concern in Wastewater
233(1)
15.2.2.2 Pond Reactors (Photo-Fenton Process)
233(2)
15.2.2.3 Photochemical Approaches in the Treatment of Wastewater
235(2)
15.2.3 Membrane Bioreactor
237(1)
15.2.4 Nanotechnology in Photobiological Reactors for the Treatment of Wastewater
238(1)
15.2.4.1 Potential of Nanotechnology in the Treatment of Wastewater
238(1)
15.2.4.2 Moving Bed Biofilm Reactor
238(1)
15.3 Conclusion
238(3)
Acknowledgment
238(1)
References
239(2)
16 Bioreactors for the Production of Industrial Chemicals and Bioenergy Recovery from Waste
241(22)
Gargi Ghoshal
16.1 Introduction
241(3)
16.1.1 Biogas Production
241(2)
16.1.2 Biohydrogen Production
243(1)
16.2 Basic Biohydrogen-Manufacturing Technologies and their Deficiency
244(2)
16.2.1 Direct Biophotolysis
244(1)
16.2.2 Photofermentation
245(1)
16.2.3 Dark Fermentation
245(1)
16.3 Overview of Anaerobic Membrane Bioreactors
246(2)
16.3.1 Challenges and Opportunities
246(1)
16.3.1.1 Membrane Fouling and Energy Demands
246(2)
16.3.1.2 Biohydrogen Generation Rate and Yield
248(1)
16.4 Factors Affecting Biohydrogen Production in AnMBRs
248(4)
16.4.1 Nutrients Availability
248(2)
16.4.2 Hydraulic Retention Time (HRT) and Solid Retention Time (SRT)
250(1)
16.4.3 Design of Biohydrogen-Producing Reactor
250(1)
16.4.4 Substrate Concentration
250(1)
16.4.5 Temperature and pH
251(1)
16.4.6 Seed Culture
251(1)
16.4.7 Hydrogen Partial Pressure
251(1)
16.5 Techniques to Improve Biohydrogen Production
252(1)
16.5.1 Reactor Design and Configuration
252(1)
16.5.2 Microbial Consortia
252(1)
16.6 Environmental and Economic Assessment of BioHydrogen Production in AnMBRs
253(1)
16.7 Future Perspectives of Biohydrogen Production
253(1)
16.8 Products Based on Solid-State Fermenter
253(4)
16.8.1 Bioactive Products
253(1)
16.8.2 Enzymes
254(1)
16.8.3 Organic Acids
255(1)
16.8.4 Biopesticides
256(1)
16.8.5 Aroma Compounds
256(1)
16.8.6 Bio-Pigment Production
257(1)
16.8.7 Miscellaneous Compounds
257(1)
16.9 Koji Fermenters for SSF for Production of Different Chemicals
257(1)
16.10 Recent Research on Biofuel Manufacturing in Bioreactors Other than Biohydrogen
258(5)
References
259(4)
Part VI Waste2Energy with Biotechnology: Feasibilities and Challenges
263(66)
17 Utilization of Microbial Potential for Bioethanol Production from Lignocellulosic Waste
265(18)
Manisha Rout
Bithika Sardar
Puneet K. Singh
Ritesh Pattnaik
Snehasish Mishra
17.1 Introduction
265(3)
17.1.1 Bioethanol from Different Feed Stocks
265(1)
17.1.2 Sources of Lignocellulosic Biomass
266(1)
17.1.3 Structure and Composition of Lignocellulose
266(1)
17.1.4 Challenges in Bioethanol Production from LCB
267(1)
17.2 Processing of Lignocellulosic Biomass to Ethanol
268(3)
17.3 Biological Pretreatment
271(5)
17.3.1 Potential Microorganisms Involved in Lignin Degradation
272(1)
17.3.1.1 Lignin Degrading Fungi
272(2)
17.3.1.2 Lignin-Degrading Bacteria
274(1)
17.3.2 Mechanism Involved in Delignification
274(1)
17.3.3 Enzymes Involved Biological Pretreatment
274(1)
17.3.3.1 Lignin Peroxidase
275(1)
17.3.3.2 Manganese Peroxidase
275(1)
17.3.3.3 Laccases
275(1)
17.3.3.4 Versatile Peroxidase (VP)
276(1)
17.4 Enzymatic Hydrolysis
276(1)
17.4.1 Hydrolysis of Polysaccharides
277(1)
17.4.1.1 Cellulose and Hemicellulose Degrading Enzymes and Mechanisms
277(1)
17.5 Fermentation
277(2)
17.5.1 Microorganisms Involved in Fermentation
277(1)
17.5.2 Fermentation Process
278(1)
17.5.3 Product Recovery of Bioethanol Post Fermentation
278(1)
17.6 Conclusion and Future Prospects
279(4)
References
280(3)
18 Advancements in Bio-hydrogen Production from Waste Biomass
283(20)
Shyamali Sarma
Sankar Chakma
18.1 Introduction
283(2)
18.2 Routes of Production
285(1)
18.2.1 Biophotolysis
285(1)
18.2.2 Dark Fermentation
286(1)
18.2.3 Photo-Fermentation
286(1)
18.3 Biomass as Feedstock for Biohydrogen
286(2)
18.4 Factors Affecting Biohydrogen
288(4)
18.4.1 Influence of pH
288(1)
18.4.2 System Temperature
288(1)
18.4.3 Inoculum
289(2)
18.4.4 Substrates
291(1)
18.4.5 Type of Reactor
291(1)
18.4.5.1 Batch Mode
291(1)
18.4.5.2 Continuous Mode
292(1)
18.4.5.3 Fed Batch
292(1)
18.5 Strategies to Enhance Microbial Hydrogen Production
292(5)
18.5.1 Integrative Process
293(1)
18.5.2 Medium and Process Optimization
293(1)
18.5.3 Metabolic Flux Analysis
294(1)
18.5.4 Application of Ultrasonication
295(1)
18.5.5 Strain Development
295(2)
18.6 Future Perspectives and Conclusion
297(6)
References
297(6)
19 Reaping of Bio-Energy from Waste Using Microbial Fuel Cell Technology
303(12)
Senthilkumar Kandasamy
Naveenkumar Manickam
Samraj Sadhappa
19.1 Introduction
303(3)
19.1.1 Effects of Industrial Wastes on Environment
304(1)
19.1.1.1 MFC as Energy Source
304(1)
19.1.1.2 Theory of Microbial Fuel Cell
305(1)
19.2 Microbial Fuel Cell Components and Process
306(3)
19.2.1 Mechanism Behind MFC
306(2)
19.2.1.1 Electrode Materials in MFC
308(1)
19.2.1.2 Proton Exchange Membrane
309(1)
19.3 Application of Microbial Fuel Cell to the Social Relevance
309(2)
19.3.1 Electricity Generation
309(1)
19.3.1.1 Bio Hydrogen
310(1)
19.3.2 Wastewater Treatment
310(1)
19.3.3 Biosensor
310(1)
19.4 Conclusion and Future Perspectives
311(4)
References
311(4)
20 Application of Sustainable Micro-Algal Species in the Production of Bioenergy for Environmental Sustainability
315(14)
Senthilkumar Kandasamy
Jayabharathi Jayabalan
Balaji Dhandapani
20.1 Introduction
315(2)
20.1.1 Classification of Biofuels
315(1)
20.1.2 Microalgae and Bioenergy
316(1)
20.2 Cultivation and Processing of Microalgae
317(9)
20.2.1 Cultivation of Microalgae
319(1)
20.2.1.1 Isolation of Cell Cultures
319(1)
20.2.1.2 Single-Cell Isolation
319(1)
20.2.2 Techniques
319(1)
20.2.2.1 Filtration
319(1)
20.2.2.2 Autoclaving
320(1)
20.2.2.3 Dry Heat
320(1)
20.2.2.4 Pasteurization
320(1)
20.2.3 Culture Conditions
320(1)
20.2.3.1 Temperature
320(1)
20.2.3.2 Lighting
321(1)
20.2.3.3 Culture Media
321(1)
20.2.3.4 Ph
321(1)
20.2.3.5 Aeration
321(1)
20.2.4 Culture Methods
321(1)
20.2.4.1 Batch Culture
321(1)
20.2.4.2 Continuous Culture
322(1)
20.2.5 Harvesting Cultures
322(1)
20.2.6 Bioenergy Production Process from Microalgae
322(1)
20.2.6.1 Production Processes
322(1)
20.2.6.2 Biomass Production from Marine Water Algae
322(2)
20.2.7 Large-Scale Production and Processing of Microalgae
324(1)
20.2.7.1 Biomethane Production by Anaerobic Digestion
324(1)
20.2.7.2 Liquid Oil Production by Thermal Liquefaction Process
325(1)
20.2.7.3 Transesterification Process
325(1)
20.2.7.4 Nano-Catalyzed Transesterification Process
325(1)
20.2.7.5 Biohydrogen Production by Photobiological Process
326(1)
20.3 Genetic Engineering for the Improvement of Microalgae
326(1)
20.4 Conclusion and Challenges in Commercializing Microalgae
327(2)
References
327(2)
Part VII Emerging Technologies (Nano Biotechnology) for Zero Waste
329(80)
21 Nanomaterials and Biopolymers for the Remediation of Polluted Sites
331(12)
Minchitha K. Umesha
Sadhana Venkatesh
Swetha Seshagiri
21.1 Introduction
331(1)
21.2 Water Remediation
332(4)
21.2.1 Application of Nanotechnology for Water Disinfection and Textile Dye Degradation
332(2)
21.2.2 Nanobiopolymers for Water Disinfection and Textile Dye Degradation
334(2)
21.3 Soil Remediation
336(7)
21.3.1 Application of Nanotechnology for Soil Remediation
337(2)
References
339(4)
22 Biofunctionalized Nanomaterials for Sensing and Bioremediation of Pollutants
343(18)
Satyam
S. Patra
22.1 Introduction
343(2)
22.2 Synthesis and Surface Modification Strategies for Nanoparticles
345(1)
22.3 Binding Techniques for Biofunctionalization of Nanoparticles
345(3)
22.3.1 Covalent Functionalization
346(1)
22.3.2 Non-Covalent Functionalization
346(1)
22.3.3 Encapsulation
347(1)
22.3.4 Adsorption
348(1)
22.4 Commonly Functionalized Biomaterials and Their Role in Remediation
348(6)
22.4.1 Biopolymers
348(3)
22.4.2 Surfactants
351(1)
22.4.3 Nucleic Acid
352(1)
22.4.4 Proteins and Peptides
352(1)
22.4.5 Enzymes
353(1)
22.5 Biofunctionalized Nanoparticle-Based Sensors for Environmental Application
354(1)
22.6 Limitation of Biofunctionalized Nanoparticles for Environmental Application
355(1)
22.7 Future Perspective
356(1)
22.8 Conclusion
356(5)
Acknowledgment
357(1)
References
357(4)
23 Biogeneration of Valuable Nanomaterials from Food and Other Wastes
361(8)
Amrutha B. Mahanthesh
Swarrna Haldar
Soumitra Banerjee
23.1 Introduction
361(1)
23.2 Green Synthesis of Nanomaterials by Using Food and Agricultural Waste
362(1)
23.3 Synthesis of Bionanoparticles from Food and Agricultural Waste
362(3)
23.3.1 Cellulose Nanomaterials
363(1)
23.3.2 Protein Nanoparticles
364(1)
23.4 Conclusion
365(4)
Acknowledgments
365(1)
References
365(4)
24 Biosynthesis of Nanoparticles Using Agriculture and Horticulture Waste
369(10)
Vinayaka B. Shet
Keshava Joshi
Lokeshwari Navalgund
Ujwal Puttur
24.1 Introduction
369(1)
24.2 Agricultural and Horticultural Waste
370(1)
24.3 Biosynthesis of Nanoparticle
370(3)
24.3.1 Processing of Agriculture and Horticulture Waste
370(2)
24.3.2 Synthesis of Nanoparticles
372(1)
24.3.3 Separation of Nanoparticles
372(1)
24.4 Characterization of Biosynthesized Nanoparticles
373(2)
24.4.1 UV Spectrophotometer
373(1)
24.4.2 Fourier-Transform Infrared Spectroscopy (FTIR)
374(1)
24.4.3 Dynamic Light Scattering (DLS) and Zeta Potential
374(1)
24.4.4 Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) with Energy-Dispersive X-ray (EDX)
374(1)
24.4.5 X-ray Diffraction (XRD)
375(1)
24.5 Applications of Biosynthesized Nanoparticles
375(4)
24.5.1 Antimicrobial Activity
375(1)
24.5.2 Photocatalysis
375(1)
24.5.3 Removal of Antibiotic from Water
376(1)
24.5.4 Effect on Enzyme Activity
376(1)
24.5.5 Nanofertilizer
376(1)
24.5.6 Radical Scavenging Activity
376(1)
24.5.7 Nano Additives for Fuel
377(1)
References
377(2)
25 Nanobiotechnology - A Green Solution
379(18)
Baishakhi De
Tridib K. Goswami
25.1 Introduction
379(2)
25.2 Nanotechnology and Nanobiotechnology -- The Green Processes and Technologies
381(4)
25.2.1 Green Chemistry
382(2)
25.2.1.1 Advantages and Challenges
384(1)
25.3 The Versatile Role of Nanotechnology and Nanobiotechnology
385(5)
25.3.1 Agriculture, Potable Water, and Food Processing
385(3)
25.3.2 Health, Medicine, Drug Delivery, and Pharmaceuticals
388(1)
25.3.3 Automobile, Aircraft, Space Travel
389(1)
25.3.4 Sustainable Energy, Building Technology
389(1)
25.3.5 Society and Education
390(1)
25.4 Nanotechnologies in Waste Reduction and Management
390(3)
25.5 Conclusion
393(4)
References
393(4)
26 Novel Biotechnological Approaches for Removal of Emerging Contaminants
397(12)
Sangeetha Gandhi Sivasubramaniyan
Senthilkumar Kandasamy
Naveen kumar Manickam
26.1 Introduction
397(1)
26.2 Classification of Emerging Contaminants
397(2)
26.2.1 Microfibers and Microplastics
398(1)
26.2.2 Pharmaceutical Contaminants
398(1)
26.2.3 Personal Care Products and Its Contaminants
398(1)
26.2.4 Inorganic Metals in Foods and Water
399(1)
26.2.5 Perfluorinated Compounds
399(1)
26.2.6 Disinfection Byproducts
399(1)
26.3 Various Sources of ECs
399(1)
26.3.1 Deposition of Solid and Liquid Waste on Land
399(1)
26.3.2 Deposition of Solid and Liquid Waste into the Water Sources
400(1)
26.4 Need of Removal of ECs
400(1)
26.5 Methods of Treatment of EC
400(1)
26.5.1 Physical Methods
400(1)
26.5.2 Chemical Methods
401(1)
26.5.3 Biotechnological Approach
401(1)
26.6 Biotechnological Approaches for the Removal of ECs
401(5)
26.6.1 Digestion by Membrane Bioreactor
401(1)
26.6.2 Enzymatic Treatment
401(1)
26.6.3 Biofiltration
402(1)
26.6.4 Bioremediation
402(1)
26.6.4.1 Bioaugmentation
403(1)
26.6.4.2 Bioreactors
403(1)
26.6.4.3 Biostimulation
404(1)
26.6.4.4 Bioventing
404(1)
26.6.4.5 Composting
404(1)
26.6.4.6 Land Farming/Land Treatment
405(1)
26.6.4.7 Biopiling
405(1)
26.6.5 Phytoremediation
405(1)
26.6.5.1 Phytoextraction and Phytoaccumulation
406(1)
26.6.5.2 Phytostabilization
406(1)
26.6.5.3 Phytovolatilization
406(1)
26.6.5.4 Phytofiltration
406(1)
26.6.5.5 Phytodegradation
406(1)
26.7 Conclusion
406(3)
References
407(2)
Part VIII Economics and Commercialization of Zero Waste Biotechnologies
409(98)
27 Byconversion of Waste to Wealth as Circular Bioeconomy Approach
411(10)
Dayanand Peter
Jaya Rathinam
Ranganathan T. Vasudevan
27.1 Introduction
411(2)
27.1.1 Circular Economy
411(1)
27.1.2 Bioeconomy
412(1)
27.1.3 Circular Bioeconomy
412(1)
27.2 Biovalorization of Organic Waste
413(1)
27.2.1 Extraction of Bioactives
413(1)
27.2.2 Bioenergy Production
413(1)
27.3 Bioeconomy Waste Production and Management
414(2)
27.4 Concerns About Managing Food Waste in Achieving CircularBioeconomy Policies
416(1)
27.5 Economics of Bioeconomy
417(1)
27.6 Entrepreneurship in Bioeconomy
417(1)
27.6.1 Current Trends in Bioeconomy
418(1)
27.7 Conclusion
418(3)
List of Abbreviations
418(1)
References
418(3)
28 Bioconversion of Food Waste to Wealth - Circular Bioeconomy Approach
421(18)
Rajam Ramasamy
Parthasarathi Subramanian
28.1 Introduction
421(1)
28.2 Circular Bioeconomy
422(2)
28.3 Food Waste Management Current Practices
424(1)
28.4 Techniques for Bioconversion of Food Waste Toward Circular Bioeconomy Approach
425(10)
28.4.1 Anaerobic Digestion
425(2)
28.4.1.1 Factors Influencing Anaerobic Digestion
427(2)
28.4.2 Microbial Fermentation
429(2)
28.4.3 Enzymatic Treatment
431(3)
28.4.3.1 Enzyme Immobilization Technology
434(1)
28.5 Conclusion
435(4)
References
435(4)
29 Zero-Waste Biorefineries for Circular Economy
439(18)
Puneet K. Singh
Pooja Shukla
Sunil K. Verma
Snehasish Mishra
Pankaj K. Parhi
29.1 Introduction
439(1)
29.2 Bioenergy, Bioeconomy, and Biorefineries
440(3)
29.3 Bioeconomic Strategies Around the World
443(2)
29.3.1 Malaysia
444(1)
29.3.2 Brazil
444(1)
29.3.3 United States
444(1)
29.3.4 Canada
444(1)
29.3.5 Germany
444(1)
29.3.6 European Union
445(1)
29.3.7 Scenario of Bioeconomy in India
445(1)
29.4 Challenging Factors and Impact on Bioeconomy
445(2)
29.5 Effect of Increased CO2 Concentration, Sequestration, and Circular Economy
447(1)
29.6 Carbon Sequestration in India
447(1)
29.7 Methods for CO2 Capture
448(3)
29.7.1 Scenario
1. Photosynthetic Bacterial Model for CO2 Sequestration
448(1)
29.7.2 Scenario
2. Biochar Model for CO2 Sequestration
448(1)
29.7.3 Scenario
3. Biofuels
449(1)
29.7.4 Biological-Based Methods to Capture CO2
449(1)
29.7.4.1 Photosynthetic Model
449(1)
29.7.4.2 Substrate in Biorefinery and Carbon Management
449(2)
29.8 Conclusion and Future Approach
451(6)
References
452(5)
30 Feasibility and Economics of Biobutanol from Lignocellulosic and Starchy Residues
457(16)
Sandesh Kanthakere
30.1 Introduction
457(1)
30.2 Opportunities and Future of Zero Waste Biobutanol
458(1)
30.3 Generation of Lignocellulosic and Starchy Wastes
459(3)
30.3.1 Types and Sources of Waste Generation
460(1)
30.3.2 Composition of Lignocellulose and Starchy Residues
461(1)
30.4 Value Added Products from Lignocellulose and Starchy Residues
462(6)
30.4.1 Feasibility of Biobutanol Production from Lignocellulose and Starchy Residues
463(1)
30.4.2 Pretreatment
463(2)
30.4.3 Economics of Biobutanol Production
465(3)
30.5 Conclusion
468(5)
References
468(5)
31 Critical Issues That Can Underpin the Drive for Sustainable Anaerobic Biorefinery
473(18)
Spyridon Achinas
31.1 Introduction
473(1)
31.2 Biogas - An Energy Vector
474(1)
31.3 Anaerobic Biorefinery Approach
475(2)
31.4 Technological Trends and Challenges in the Anaerobic Biorefinery
477(5)
31.4.1 Pretreatment
477(3)
31.4.2 Multistage AD Process
480(1)
31.4.3 Dynamics of Methanogenic Communities
480(2)
31.5 Perspectives Toward the Revitalization of the Anaerobic Biorefineries
482(3)
31.5.1 Reciprocity Between Research, Industry, and Government
482(1)
31.5.2 Transition to the Biogas-based Green Economy
483(2)
31.6 Conclusion
485(6)
Conflict of Interest
485(1)
References
485(6)
32 Microbiology of Biogas Production from Food Waste: Current Status, Challenges, and Future Needs
491(16)
Vanajakshi Vasudeva
Inchara Crasta
Sandeep N. Mudliar
32.1 Introduction
491(1)
32.2 Fundamentals for Accomplishing National Biofuel Policy
492(1)
32.3 Significances of Anaerobic Microbiology in Biogas Process
493(1)
32.4 Microbiology and Physico-Chemical Process in AD
493(3)
32.4.1 Hydrolysis and Acidogenesis
493(1)
32.4.2 Acetogenesis
494(1)
32.4.3 Methanogenesis and the Essential Microbial Consortia
495(1)
32.5 Pretreatment
496(1)
32.6 Variations in Anaerobic Digestion
496(1)
32.7 Factors Influencing Biogas Production
497(5)
32.7.1 Temperature
497(1)
32.7.2 Ph
497(1)
32.7.3 VFA
498(1)
32.7.4 Microbial Consortia in AD
498(1)
32.7.5 Recirculation of Leachate
499(1)
32.7.6 Ammonia
499(1)
32.7.7 Feedstock Composition
500(1)
32.7.7.1 Protein-Rich Substrate
500(1)
32.7.7.2 Lipid-Rich Substrate
500(1)
32.7.7.3 Carbohydrate-Rich Substrate
500(1)
32.7.8 Trace Element Supplementation
500(1)
32.7.9 Environment/Alkalinity
501(1)
32.7.10 Toxicity
501(1)
32.8 Application of Metagenomics
502(2)
32.9 Conclusions and Future Needs
504(3)
List of Abbreviations
504(1)
References
505(2)
Part IX Green and Sustainable future (Zero Waste and Zero Emissions)
507(58)
33 Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products
509(12)
Murtidhar Meghwal
Harita Desai
Sanchita Baisya
Arpita Das
Sanghmitra Gade
Rekha Rani
Kalyan Das
Ravi Kumar Kadeppagari
33.1 Introduction
509(1)
33.2 Treatment
510(1)
33.2.1 Chemical Treatment
510(1)
33.2.2 Microbiological and Biotechnological Treatment
511(1)
33.3 Evaluation of Waste Cooking Oil and Valorized Cooking Oil
511(1)
33.4 Versatile Products as an Outcome of Valorized Waste Cooking Oil
512(4)
33.4.1 Biosurfactants and Liquid Detergents
512(1)
33.4.2 Green Chemical Lubricants
513(1)
33.4.3 Biodiesel Production
513(1)
33.4.4 Microbial Lipids
513(1)
33.4.5 Vitamins and Nutraceuticals
514(1)
33.4.6 Biopolymer Synthesis
514(1)
33.4.7 Polyhydroxyalkanoates
515(1)
33.4.8 Feedstock for Microbial Processes
515(1)
33.4.9 Bioasphalt
516(1)
33.4.10 Bioplasticizers
516(1)
33.4.11 Biosolvent
516(1)
33.5 Conclusion
516(5)
References
517(4)
34 Agri and Food Waste Valorization Through the Production of Biochemicals and Packaging Materials
521(22)
A. Jagannath
Pooja J. Rao
34.1 Introduction
521(1)
34.2 Importance
522(1)
34.3 Worldwide Initiatives
522(1)
34.4 Composition-Based Solutions and Approaches
523(1)
34.5 Biochemicals
523(3)
34.5.1 Functional Phytochemicals
524(1)
34.5.2 Industrial-Relevant Biochemicals
524(1)
34.5.3 Enzymes
525(1)
34.5.4 Foods/Feeds/Supplements
525(1)
34.6 Biofuels
526(1)
34.7 Packaging Materials and Bioplastics
526(5)
34.7.1 Scope and Features
527(1)
34.7.2 PolylacticAcid(PLA)
527(2)
34.7.3 Polyhydroxyalkanoates (PHAs)
529(1)
34.7.4 Reinforcement in Bioplastic Properties
529(1)
34.7.4.1 Natural Extract
529(1)
34.7.4.2 Copolymerization
530(1)
34.7.4.3 Green Composites
530(1)
34.8 Green Valorization
531(1)
34.9 Conclusion
531(12)
References
532(11)
35 Edible Coatings and Films from Agricultural and Marine Food Wastes
543(14)
C. Naga Deepika
Murlidhar Meghwal
Pramod K. Prabhakar
Anurag Singh
Rekha Rani
Ravi Kumar Kadeppagari
35.1 Introduction
543(1)
35.2 Sources of Food Waste
544(1)
35.3 Film/Coating Made from Agri-Food Waste
545(3)
35.3.1 Biopolymers from Fruits and Vegetables Waste
545(1)
35.3.2 Biopolymers from Grain Wastage
546(1)
35.3.3 Bioactive Compounds from Plant Residues
547(1)
35.4 Film/Coating Materials from Marine Biowaste
548(2)
35.4.1 Fish Processing By-products
549(1)
35.4.2 Crustacean By-Products
549(1)
35.5 Film/Coating Formation Methods
550(2)
35.5.1 Solvent Casting
550(1)
35.5.2 Extrusion
551(1)
35.5.3 Dipping Method
552(1)
35.5.4 Spraying Method
552(1)
35.5.5 Spreading Method
552(1)
35.6 Conclusion
552(5)
References
553(4)
36 Valorization of By-Products of Milk Fat Processing
557(8)
Menon R. Ravindra
Monika Sharma
Rajesh Krishnegowda
Amanchi Sangma
36.1 Introduction
557(1)
36.2 Processing of Milk Fat and Its By-Products
558(1)
36.3 Valorization of Buttermilk
558(4)
36.3.1 Buttermilk as an Ingredient in Food and Dairy Products
559(1)
36.3.1.1 Market Milk
559(1)
36.3.1.2 Dahi
559(1)
36.3.1.3 Yoghurt
559(1)
36.3.1.4 Cheeses
560(1)
36.3.1.5 Indian Traditional Dairy Products
560(1)
36.3.1.6 Buttermilk Ice Cream
560(1)
36.3.1.7 Dairy-Based Beverages
560(1)
36.3.1.8 Probiotic Drinks
561(1)
36.3.1.9 Dried Buttermilk
561(1)
36.3.2 Buttermilk as Encapsulating Agent
561(1)
36.3.3 Buttermilk as a Source of Phospholipids
562(1)
36.4 Valorization of Ghee Residue
562(3)
36.4.1 Utilization of Ghee Residue for Value-Added Products
563(1)
36.4.2 Ghee Residue as an Ingredient in Dairy and Food Industry
563(1)
36.4.2.1 Baked Products
563(1)
36.4.2.2 Chocolate and Confectionery
563(1)
36.4.2.3 Ghee-Residue-Based Flavor Enhancer
564(1)
36.4.2.4 Indian Traditional Sweetmeat
564(1)
36.4.3 Ghee Residue as Animal Feed
564(1)
36.4.4 Ghee Residue as Source of Phospholipids
564(1)
36.5 Conclusion
565(1)
References 565(4)
Index 569
Chaudhery Mustansar Hussain, PhD, is Adjunct Professor and Lab Director in the Department of Chemistry & Environmental Sciences at the New Jersey Institute of Technology (NJIT), Newark, New Jersey, USA.

Ravi Kumar Kadeppagari, PhD, is a Professor at Centre for Incubation Innovation Research and Consultancy (CIIRC), and Head of the Department of Food Technology, Jyothy Institute of Technology, Bengaluru, Karnataka, India.