|
Bipedal Robots and Walking |
|
|
|
|
1 | (1) |
|
|
2 | (9) |
|
Biomechanical system: a source of inspiration |
|
|
2 | (7) |
|
Skeletal structure and musculature |
|
|
9 | (2) |
|
|
11 | (10) |
|
|
11 | (2) |
|
Walking and running trajectory data |
|
|
13 | (5) |
|
|
18 | (3) |
|
Bipedal walking robots: state of the art |
|
|
21 | (11) |
|
|
21 | (3) |
|
Japanese studies and creations |
|
|
24 | (3) |
|
|
27 | (4) |
|
General evolution tendencies |
|
|
31 | (1) |
|
|
32 | (8) |
|
|
33 | (2) |
|
Robotics and dangerous terrains |
|
|
35 | (1) |
|
Toy robots and computer animation in cinema |
|
|
35 | (2) |
|
|
37 | (2) |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (1) |
|
|
41 | (6) |
|
Kinematic and Dynamic Models for Walking |
|
|
|
|
47 | (1) |
|
The kinematics of walking |
|
|
48 | (22) |
|
DoF of the locomotion system |
|
|
48 | (1) |
|
|
49 | (4) |
|
Generalized coordinates for a sagittal step |
|
|
53 | (4) |
|
Generalized coordinates for three-dimensional walking |
|
|
57 | (9) |
|
|
66 | (4) |
|
|
70 | (33) |
|
|
71 | (16) |
|
Newton-Euler's dynamic model |
|
|
87 | (11) |
|
|
98 | (5) |
|
|
103 | (14) |
|
CoP and equilibrium constraints |
|
|
103 | (13) |
|
|
116 | (1) |
|
Complementary feasibility constraints |
|
|
117 | (6) |
|
Respecting the technological limitations |
|
|
118 | (1) |
|
Non-collision constraints |
|
|
119 | (4) |
|
|
123 | (1) |
|
|
123 | (4) |
|
Design Tools for Making Bipedal Robots |
|
|
|
|
127 | (1) |
|
Study of influence of robot body masses |
|
|
128 | (37) |
|
|
129 | (18) |
|
|
147 | (18) |
|
Mechanical design: the architectures carried out |
|
|
165 | (16) |
|
The structure of planar robots |
|
|
165 | (3) |
|
|
168 | (4) |
|
Technology of inter-body joints |
|
|
172 | (2) |
|
|
174 | (7) |
|
|
181 | (26) |
|
|
181 | (5) |
|
Characteristics of electric actuators |
|
|
186 | (4) |
|
Elements of choice for robotic actuators |
|
|
190 | (3) |
|
Comparing actuator performances |
|
|
193 | (9) |
|
Performances of transmission-actuator associations |
|
|
202 | (5) |
|
|
207 | (5) |
|
|
207 | (1) |
|
|
208 | (1) |
|
Characteristics and integration |
|
|
209 | (1) |
|
Sensors of inertial localization |
|
|
210 | (2) |
|
|
212 | (1) |
|
|
213 | (2) |
|
|
213 | (1) |
|
|
213 | (2) |
|
|
215 | (4) |
|
Walking Pattern Generators |
|
|
|
|
219 | (1) |
|
Passive and quasi-passive dynamic walking |
|
|
220 | (7) |
|
|
220 | (2) |
|
Quasi-passive dynamic walking |
|
|
222 | (5) |
|
|
227 | (1) |
|
Dynamic synthesis of walking |
|
|
228 | (8) |
|
Performance criteria for walking synthesis |
|
|
228 | (4) |
|
Formalizing the problem of dynamic optimization |
|
|
232 | (4) |
|
Walking synthesis via parametric optimization |
|
|
236 | (25) |
|
Approximating the control variables |
|
|
237 | (1) |
|
Parameterizing the configuration variables |
|
|
238 | (8) |
|
Parameterizing the Lagrange multipliers |
|
|
246 | (4) |
|
Formulation of the parametric optimization problem |
|
|
250 | (5) |
|
A parametric optimization example |
|
|
255 | (6) |
|
|
261 | (1) |
|
|
262 | (5) |
|
|
|
|
267 | (2) |
|
Hybrid systems and stability study |
|
|
269 | (4) |
|
Taking into account the unilateralism of the contact constraint |
|
|
273 | (9) |
|
|
273 | (9) |
|
Online modification of references |
|
|
282 | (14) |
|
|
282 | (3) |
|
The ZMP's imposed evolution |
|
|
285 | (7) |
|
Bounded evolution of the ZMP |
|
|
292 | (4) |
|
Taking an under-actuated phase into account |
|
|
296 | (5) |
|
Taking the double support phase into account |
|
|
301 | (5) |
|
Intuitive and neural network methods |
|
|
306 | (12) |
|
|
306 | (5) |
|
|
311 | (7) |
|
|
318 | (4) |
|
|
322 | (1) |
|
|
323 | (4) |
Index |
|
327 | |