Atjaunināt sīkdatņu piekrišanu

E-grāmata: Blockchain for Cyberphysical Systems

  • Formāts: 290 pages
  • Izdošanas datums: 31-Jan-2020
  • Izdevniecība: Artech House Publishers
  • ISBN-13: 9781630817848
  • Formāts - PDF+DRM
  • Cena: 125,10 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 290 pages
  • Izdošanas datums: 31-Jan-2020
  • Izdevniecība: Artech House Publishers
  • ISBN-13: 9781630817848

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This exciting book will explore how Blockchain (BC) technology has the potential to overcome challenges in the current cyber-physical system (CPS) environment. BC is a timestamp ledger of blocks that is used for storing and sharing data in a distributed manner. BC has attracted attention from practitioners and academics in different disciplines, including law, finance, and computer science, due to its use of distributed structure, immutability and security and privacy. However, applying blockchain in a cyber-physical system (CPS) is not straightforward and involves challenges, including lack of scalability, resource consumption, and delay.

This book will provide a comprehensive study on blockchain for CPS. CPS and the existing solutions in CPS and will outline the limitations are presented. The key features of blockchain and its salient features which makes it an attractive solution for CPS are discussed. The fundamental challenges in adopting blockchain for CPS including scalability, delay, and resource consumption are presented and described. Blockchain applications in smart grids, smart vehicles, supply chain; and IoT Data marketplaces are explored. The future research directions to further improve blockchain performance in CPS is also provided.
Preface xv
Acknowledgments xvii
Part I
1(52)
1 Introduction to Cyberphysical Systems
3(12)
1.1 Introduction
3(3)
1.2 CPS Application Opportunities
6(3)
1.2.1 Smart Cities
7(1)
1.2.2 Smart Grids
8(1)
1.2.3 Supply Chains
8(1)
1.3 CPS Challenges
9(3)
1.3.1 Centtalization
9(1)
1.3.2 Security
10(1)
1.3.3 Privacy
10(1)
1.3.4 Heterogeneity in Device Resources
11(1)
1.3.5 Lack of Control or Auditability over Data
11(1)
1.3.6 Persistence/Sustainability
11(1)
1.3.7 Trust
12(1)
1.4 Conclusion
12(3)
References
13(2)
2 Distributed Solutions for CPS
15(20)
2.1 Introduction
15(2)
2.2 Distributed Processing in CPS
17(2)
2.2.1 Embedded Processing
18(1)
2.2.2 Embedded Learning
18(1)
2.3 Distributed Communication in CPS
19(6)
2.3.1 Security and Privacy in CPS
19(5)
2.3.2 Trust and Reputation Systems for CPS
24(1)
2.4 Distributed Storage in CPS
25(4)
2.5 Distributed Energy Management in CPS
29(1)
2.6 Limitations and Open Questions
29(2)
2.7 Conclusions
31(4)
References
32(3)
3 Blockchain for CPS
35(18)
3.1 Introduction
35(1)
3.2 Blockchain
36(8)
3.2.1 Blockchain Structure
36(3)
3.2.2 Storing New Blocks
39(2)
3.2.3 Consensus Algorithms
41(3)
3.3 A Review on the Existing Blockchain-Based Frameworks for CPS
44(2)
3.3.1 Ethereum
44(1)
3.3.2 Hyperledger
45(1)
3.3.3 IoTA
45(1)
3.3.4 Corda
46(1)
3.4 An Example Scenario
46(1)
3.5 Challenges in Adopting Blockchain in CPS
47(2)
3.5.1 Scalability
47(1)
3.5.2 Delay
47(1)
3.5.3 Computational Resource Consumption
48(1)
3.5.4 Memory Overhead
48(1)
3.5.5 Throughput
48(1)
3.5.6 Privacy
48(1)
3.5.7 Reliance on Trusted Third Parties (TTPs)
49(1)
3.6 Conclusions
49(4)
References
50(3)
Part II
53(116)
4 Lightweight Scalable Blockchains
55(28)
4.1 Introduction
55(1)
4.2 Towards Lightweight Blockchain for CPS
56(12)
4.2.1 Hierarchical Approaches
56(2)
4.2.2 Optimized Consensus Algorithms
58(2)
4.2.3 Partial Centralization
60(2)
4.2.4 Summarization
62(1)
4.2.5 Chain Management
63(3)
4.2.6 Toward New Blockchain Instantiations
66(2)
4.3 LSB for CPS
68(10)
4.3.1 Overview
68(1)
4.3.2 Overlay Formation
69(2)
4.3.3 Blockchain Structure
71(2)
4.3.4 Storing Blocks
73(1)
4.3.5 Verifying Transactions
74(1)
4.3.6 Managing Load
75(2)
4.3.7 Transaction Flow
77(1)
4.4 Comparative Evaluation
78(1)
4.5 Conclusion
79(4)
References
80(3)
5 Memory-Optimized Blockchains
83(28)
5.1 Introduction
83(1)
5.2 State-of-the-Art Memory-Optimized Solutions
84(11)
5.2.1 Off-Chain Storage
85(2)
5.2.2 Removing Off-Chain Data
87(4)
5.2.3 Data Modification
91(2)
5.2.4 Optimizing Transactions
93(2)
5.3 A Memory-Optimized and Flexible Blockchain (MOF-BC)
95(11)
5.3.1 Transaction Removal
97(1)
5.3.2 Memory Optimization
98(6)
5.3.4 Batch Removal of Transactions
104(2)
5.4 Comparative Evaluation
106(1)
5.5 Summary
107(4)
References
108(3)
6 Managing Data Trust in Blockchain
111(30)
6.1 Introduction
111(2)
6.2 Trust in CPS Applications
113(3)
6.2.1 Trusting the Data (Data-Centric)
113(2)
6.2.2 Trusting the Network Participants (Entity-Centric)
115(1)
6.3 Existing Trust Management Approaches
116(4)
6.4 A Multilayered Trust Management Framework
120(17)
6.4.1 Two-Tiered Network Model for CPS Applications
122(2)
6.4.2 End-to-End Trust Management Framework
124(7)
6.4.3 Lightweight Blockchain Architecture
131(5)
6.4.4 Case Study
136(1)
6.5 Security Analysis of the End-to-End Trust Framework
137(2)
6.6 Conclusions
139(2)
References
139(2)
7 User Anonymity in Blockchain
141(28)
7.1 Introduction
141(2)
7.2 Threats Against User Anonymity
143(7)
7.2.1 Active Interaction
144(1)
7.2.2 Analyzing Network Traffic
145(2)
7.2.3 Analyzing Transactions
147(1)
7.2.4 Analyzing Off-the-Chain Information
148(2)
7.3 Protecting the User Anonymity
150(6)
7.3.1 Mixing Services
150(4)
7.3.2 Cryptographical Methods
154(2)
7.4 Key Management
156(2)
7.5 Anonymity in CPS
158(5)
7.5.1 Overview
159(1)
7.5.2 Attack Model
159(2)
7.5.3 Protecting User Anonymity
161(1)
7.5.4 Experimental Results
162(1)
7.6 Conclusions
163(6)
References
166(3)
Part III
169(108)
8 Blockchain Applications in Smart Grids
171(18)
8.1 Introduction
171(4)
8.2 Blockchain for Energy Trading
175(5)
8.3 Blockchain for Data Management in Smart Grids
180(3)
8.4 Blockchain for Demand-Side Management
183(2)
8.5 Blockchain for Emission Credit Trading
185(1)
8.6 Conclusions
186(3)
References
187(2)
9 Blockchain Applications in Smart Vehicles
189(24)
9.1 Introduction
189(2)
9.2 State-of-the-Art Solutions
191(10)
9.2.1 Automotive Network Security
191(3)
9.2.2 Trust and Reputation Management
194(3)
9.2.3 Privacy
197(3)
9.2.4 Vehicular Forensics
200(1)
9.3 Toward New Blockchain Security Solution for Smart Vehicles
201(9)
9.3.1 Security Objective
201(1)
9.3.2 Blockchain-Enabled Countermeasure for Smart Vehicles
202(6)
9.3.3 Use Case
208(2)
9.4 Summary and Conclusion
210(3)
References
210(3)
10 Blockchain Applications in the Supply Chain
213(28)
10.1 Introducrion
213(3)
10.2 Blockchain Requirements for SCM
216(2)
10.2.1 Blockchain Type
216(1)
10.2.2 Participants and Roles
217(1)
10.2.3 Application Stage
217(1)
10.2.4 Type of Data
217(1)
10.3 State of the Art in Blockchain-Based SCM
218(6)
10.3.1 Blockchain Platforms for SCM
219(1)
10.3.2 Blockchain as a Tool
220(1)
10.3.3 Traceability Frameworks
221(2)
10.3.4 Data Source Reliability
223(1)
10.4 Trustworthy Traceability in Supply Chains
224(14)
10.4.1 Blockchain Architecture
224(4)
10.4.2 Transaction Vocabulary
228(2)
10.4.3 Traceability Module
230(2)
10.4.4 Trust Management Module
232(3)
10.4.5 Application Product Queries, Penalties, and Rewards
235(1)
10.4.6 Case Study
236(2)
10.5 Critical Analysis
238(1)
10.6 Summary and Conclusions
238(3)
References
239(2)
11 Blockchain Applications in loT Data Marketplace
241(26)
11.1 Introduction
241(3)
11.2 Towards Blockchain-Based Data Marketplaces
244(7)
11.2.1 Trade Transaction Management
244(1)
11.2.2 Distributed Data Catalogs
245(2)
11.2.3 Hybrid Centralized-Decentralized Architectures
247(1)
11.2.4 Decentralized Data Storage and Access Mechanisms
248(2)
11.2.5 Agreement Instantiation
250(1)
11.3 The AIDM Framework Using Smart Contracts
251(13)
11.3.3 Motivating Use Case
252(1)
11.3.1 Overview
252(2)
11.3.2 Main Components
254(2)
11.3.3 Optimization-Based Selection and Allocation
256(2)
11.3.4 Marketplace Components Using Smart Contracts
258(6)
11.4 Critical Analysis
264(1)
11.5 Conclusions
264(3)
References
266(1)
12 Open Research Questions and Future Directions
267(10)
12.1 Concluding Remarks
267(6)
12.2 The Road Ahead
273(4)
References
276(1)
About the Authors 277(2)
Index 279