Atjaunināt sīkdatņu piekrišanu

E-grāmata: Braid Foliations in Low-Dimensional Topology

  • Formāts: 304 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 30-Nov-2017
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470442682
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 106,02 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Braid Foliations in Low-Dimensional Topology
  • Formāts: 304 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 30-Nov-2017
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470442682
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is a self-contained introduction to braid foliation techniques, which is a theory developed to study knots, links and surfaces in general 3-manifolds and more specifically in contact 3-manifolds. With style and content accessible to beginning students interested in geometric topology, each chapter centers around a key theorem or theorems. The particular braid foliation techniques needed to prove these theorems are introduced in parallel, so that the reader has an immediate "take-home" for the techniques involved.

The reader will learn that braid foliations provide a flexible toolbox capable of proving classical results such as Markov's theorem for closed braids and the transverse Markov theorem for transverse links, as well as recent results such as the generalized Jones conjecture for closed braids and the Legendrian grid number conjecture for Legendrian links. Connections are also made between the Dehornoy ordering of the braid groups and braid foliations on surfaces.

All of this is accomplished with techniques for which only mild prerequisites are required, such as an introductory knowledge of knot theory and differential geometry. The visual flavor of the arguments contained in the book is supported by over 200 figures.

Recenzijas

This research monograph is a highly readable and pleasant introduction to the toolkits that the authors call braid foliation techniques, a small but relatively underdeveloped corner of low-dimensional topology and geometry. It is written at a level that will be accessible to graduate students and researchers and is carefully structured and filled with useful examples." J.S. Birman, Mathematical Reviews

"The AMS once more presents the mathematical community with a strong text geared to getting graduate students and other relative beginners into the game. The present book is thorough and well-structured, leads the reader pretty deeply into the indicated parts of knot and link-theory and low-dimensional topology and does so effectively and (as far as I can tell) rather painlessly...All in all, the book looks like a hit." Michael Berg, MAA Reviews

Preface ix
Chapter 1 Links and closed braids
1(20)
§1.1 Links
1(2)
§1.2 Closed braids and Alexander's theorem
3(7)
§1.3 Braid index and writhe
10(1)
§1.4 Stabilization, destabilization and exchange moves
11(2)
§1.5 Braid groups
13(3)
§1.6 Varying perspectives of closed braids
16(2)
Exercises
18(3)
Chapter 2 Braid foliations and Markov's theorem
21(32)
§2.1 Two examples
22(5)
§2.2 Braid foliation basics
27(7)
§2.3 Obtaining braid foliations with only arcs
34(7)
§2.4 Identifying destabilizations and stabilizations
41(1)
§2.5 Markov's theorem for the unlink
42(3)
§2.6 Annuli cobounded by two braids
45(4)
§2.7 Markov's theorem
49(1)
Exercises
50(3)
Chapter 3 Exchange moves and Jones' conjecture
53(32)
§3.1 Valence-two elliptic points
54(2)
§3.2 Identifying exchange moves
56(7)
§3.3 Reducing valence of elliptic points with changes of foliation
63(4)
§3.4 Jones' conjecture and the generalized Jones conjecture
67(1)
§3.5 Stabilizing to embedded annuli
68(4)
§3.6 Euler characteristic calculations
72(4)
§3.7 Proof of the generalized Jones conjecture
76(4)
Exercises
80(5)
Chapter 4 Transverse links and Bennequin's inequality
85(22)
§4.1 Calculating the writhe and braid index
85(3)
§4.2 The standard contact structure and transverse links
88(4)
§4.3 The characteristic foliation and Giroux's elimination lemma
92(3)
§4.4 Transverse Alexander theorem
95(2)
§4.5 The self-linking number and Bennequin's inequality
97(4)
§4.6 Tight versus overtwisted contact structures
101(2)
§4.7 Transverse link invariants in low-dimensional topology
103(1)
Exercises
104(3)
Chapter 5 The transverse Markov theorem and simplicity
107(30)
§5.1 Transverse isotopies
107(1)
§5.2 Transverse Markov theorem
108(8)
§5.3 Exchange reducibility implies transverse simplicity
116(4)
§5.4 The unlink is transversely simple
120(2)
§5.5 Torus knots are transversely simple
122(13)
Exercises
135(2)
Chapter 6 Botany of braids and transverse knots
137(14)
§6.1 Infinitely many conjugacy classes
139(1)
§6.2 Finitely many exchange equivalence classes
140(3)
§6.3 Finitely many transverse isotopy classes
143(2)
§6.4 Exotic botany and open questions
145(2)
Exercises
147(4)
Chapter 7 Flypes and transverse non-simplicity
151(16)
§7.1 Flype templates
151(3)
§7.2 Botany of 3-braids
154(2)
§7.3 The clasp annulus revisited
156(5)
§7.4 A weak MTWS for 3-braids
161(1)
§7.5 Transverse isotopies and a transverse clasp annulus
162(1)
§7.6 Transversely non-simple 3-braids
163(1)
Exercises
163(4)
Chapter 8 Arc presentations of links and braid foliations
167(20)
§8.1 Arc presentations and grid diagrams
168(3)
§8.2 Basic moves for arc presentations
171(3)
§8.3 Arc presentations and braid foliations
174(4)
§8.4 Arc presentations of the unknot and braid foliations
178(3)
§8.5 Monotonic simplification of the unknot
181(3)
Exercises
184(3)
Chapter 9 Braid foliations and Legendrian links
187(32)
§9.1 Legendrian links in the standard contact structure
187(4)
§9.2 The Thurston-Bennequin and rotation numbers
191(3)
§9.3 Legendrian links and grid diagrams
194(4)
§9.4 Mirrors, Legendrian links and the grid number conjecture
198(3)
§9.5 Steps 1 and 2 in the proof of Theorem 9.8
201(3)
§9.6 Braided grid diagrams, braid foliations and destabilizations
204(6)
§9.7 Step 3 in the proof of Theorem 9.8
210(7)
Exercises
217(2)
Chapter 10 Braid foliations and braid groups
219(20)
§10.1 The braid group Bn
219(2)
§10.2 The Dehornoy ordering on the braid group
221(2)
§10.3 Braid moves and the Dehornoy ordering
223(2)
§10.4 The Dehornoy floor and braid foliations
225(6)
§10.5 Band generators and the Dehornoy ordering
231(2)
§10.6 Dehornoy ordering, braid foliations and knot genus
233(3)
Exercises
236(3)
Chapter 11 Open book foliations
239(24)
§11.1 Open book decompositions of 3-manifolds
239(2)
§11.2 Open book foliations
241(1)
§11.3 Markov's theorem in open books
242(3)
§11.4 Change of foliation and exchange moves in open books
245(3)
§11.5 Contact structures and open books
248(1)
§11.6 The fractional Dehn twist coefficient
249(4)
§11.7 Planar open book foliations and a condition on FDTC
253(4)
§11.8 A generalized Jones conjecture for certain open books
257(3)
Exercises
260(3)
Chapter 12 Braid foliations and convex surface theory
263(18)
§12.1 Convex surfaces in contact 3-manifolds
263(1)
§12.2 Dividing sets for convex surfaces
264(3)
§12.3 Bypasses for convex surfaces
267(5)
§12.4 Non-thickenable solid tori
272(5)
§12.5 Exotic botany and Legendrian invariants
277(1)
Exercises
277(4)
Bibliography 281(6)
Index 287
Douglas J. LaFountain, Western Illinois University, Macomb, IL.

William W. Menasco, University at Buffalo, NY.