Atjaunināt sīkdatņu piekrišanu

E-grāmata: Brain-Machine Interface: Circuits and Systems

  • Formāts: PDF+DRM
  • Izdošanas datums: 30-Mar-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319315416
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 30-Mar-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319315416

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides a complete overview of significant design challenges in respect to circuit miniaturization and power reduction of the neural recording system, along with circuit topologies, architecture trends, and (post-silicon) circuit optimization algorithms. The introduced novel circuits for signal conditioning, quantization, and classification, as well as system configurations focus on optimized power-per-area performance, from the spatial resolution (i.e. number of channels), feasible wireless data bandwidth and information quality to the delivered power of implantable system.

1 Introduction
1(16)
1.1 Brain-Machine Interface: Circuits and Systems
2(4)
1.2 Remarks on Current Design Practice
6(6)
1.3 Motivation
12(1)
1.4 Organization of the Book
13(4)
References
14(3)
2 Neural Signal Conditioning Circuits
17(16)
2.1 Introduction
17(1)
2.2 Power-Efficient Neural Signal Conditioning Circuit
18(3)
2.3 Operational Amplifiers
21(6)
2.4 Experimental Results
27(3)
2.5 Conclusions
30(3)
References
31(2)
3 Neural Signal Quantization Circuits
33(44)
3.1 Introduction
33(1)
3.2 Low-Power A/D Converter Architectures
34(5)
3.3 A/D Converter Building Blocks
39(13)
3.3.1 Sample and Hold Circuit
39(4)
3.3.2 Bootstrap Switch Circuit
43(2)
3.3.3 Operational Amplifier Circuit
45(1)
3.3.4 Latched Comparator Circuit
46(6)
3.4 Voltage-Domain SAR A/D Conversion
52(6)
3.5 Current-Domain SAR A/D Conversion
58(2)
3.6 Time-Domain Two-Step A/D Conversion
60(5)
3.7 Experimental Results
65(4)
3.8 Conclusions
69(8)
References
70(7)
4 Neural Signal Classification Circuits
77(18)
4.1 Introduction
77(2)
4.2 Spike Detector
79(2)
4.3 Spike Classifier
81(5)
4.4 Experimental Results
86(5)
4.5 Conclusions
91(4)
References
91(4)
5 Brain-Machine Interface: System Optimization
95(30)
5.1 Introduction
95(2)
5.2 Circuit Parameters Formulation
97(5)
5.2.1 Random Process Variability
97(4)
5.2.2 Noise in Neural Recording Interface
101(1)
5.3 Stochastic MNA for Process Variability Analysis
102(4)
5.4 Stochastic MNA for Noise Analysis
106(4)
5.5 PPA Optimization of Multichannel Neural Recording Interface
110(3)
5.5.1 Power Optimization
110(2)
5.5.2 Power Per Area Optimization
112(1)
5.6 Experimental Results
113(6)
5.7 Conclusions
119(6)
References
120(5)
6 Conclusions
125(6)
6.1 Summary of the Results
125(3)
6.2 Recommendations and Future Research
128(3)
Appendix 131(30)
Index 161
Amir Zjajo received the M.Sc. and DIC degrees from the Imperial College London, London, U.K., in 2000 and the PhD. degree from Eindhoven University of Technology, Eindhoven, The Netherlands in 2010, all in electrical engineering. In 2000, he joined Philips Research Laboratories as a member of the research staff in the Mixed-Signal Circuits and Systems Group. From 2006 until 2009, he was with Corporate Research of NXP Semiconductors as a Senior Research Scientist. In 2009, he joined Delft University of Technology as a faculty member in Circuits and Systems group.

Dr. Zjajo has published more than 70 papers in referenced journals and conference proceedings, and holds more than 10 US patents or patent pending. He is the author of the books Low-Voltage High-Resolution A/D Converters: Design,Test and Calibration (Springer, 2011, Chinese translation, China Machine Press, 2015), and Stochastic Process Variations in Deep-Submicron CMOS: Circuits and Algorithms (Springer,2014). He serves as a member of Technical Program Committee of IEEE Design, Automation and Test in Europe Conference, IEEE International Symposium on Circuits and Systems, IEEE International Symposium on VLSI, IEEE International Symposium on Nanoelectronic and Information Systems, and IEEE International Conference on Embedded Computer Systems.













His research interests include power-efficient mixed-signal circuit and system design for health and mobile applications, and neuromorphic electronic circuits for autonomous cognitive systems. Dr. Zjajo won the best paper award at BIODEVICES 2015, and DATE 2012.