Atjaunināt sīkdatņu piekrišanu

E-grāmata: Brain Mapping: The Methods

(University of California, Los Angeles, U.S.A.), (University of California, Los Angeles, U.S.A.)
  • Formāts: PDF+DRM
  • Izdošanas datums: 06-Oct-2002
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780080528281
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 226,04 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 06-Oct-2002
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780080528281
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The number of scientists and laboratories involved with brain mapping is increasing exponentially; and the second edition of this comprehensive reference has also grown much larger than the first (published in 1996), including, for example, five chapters on structural and functional MRI where the first edition had just two, along with added stimulation techniques and chapters on strategies for combining methods to achieve complementary measurements of brain activity and circuitry. Thirty-one chapters discuss concepts of mapping, its history, requirements, and applications; optical based approaches to measure and map brain function and electrophysiological methods to record and activate cortical brain regions; transcranial magnetic stimulation; tomographic-based data acquisition; postmortem anatomy, and quantitative analysis of cyto- and receptor architecture; databases and atlases; and emerging concepts. Color and b&w images support the text. Edited by Toga and Mazziotta, both of the UCLA School of Medicine. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Investigation of the functional architecture of the human brain using modern noninvasive imaging techniques is a rapidly expanding area of research. A proper knowledge of methodology is needed to appreciate the burgeoning literature in the field. This timely publication provides an excellent catalogue of the main techniques.

The authors offer an invaluable analysis of mapping strategies and techniques, providing everything from the foundations to the major pitfalls and practical applications of the modern techniques used in neuroimaging. Contains over 1000 full color pages with more than 200 color figures.

Spanning the methodological gamut from the molecular level to the whole brain while discussing anatomy, physiology, and pathology, as well as their integration, Brain Mapping: The Methods, 2e, brings the reader a comprehensive, well-illustrated and entirely readable description of the methods for brain mapping. Drs. Toga and Mazziotta provide everything from the foundations to the major pitfalls and practical applications of the technique by assembling an impressive group of experts, all widely known in their field, who contribute an outstanding set of chapters.

Papildus informācija

Spanning the methodological gamut from the molecular level to the whole brain while discussing anatomy, physiology, and pathology, as well as their integration, Brain Mapping: The Methods, 2e, brings the reader a comprehensive, well-illustrated and entirely readable description of the methods for brain mapping. Drs. Toga and Mazziotta provide everything from the foundations to the major pitfalls and practical applications of the technique by assembling an impressive group of experts, all widely known in their field, who contribute an outstanding set of chapters.
Contributors xi
Preface xv
Acknowledgments xvii
I Introduction
Introduction to Cartography of the Brain
Arthur W. Toga
John C. Mazziotta
Introduction to Cartography
3(3)
The Dimensions of a Brain Map
6(5)
The Full Scope of Brain Mapping
11(3)
Relationships to Other Biological Maps
14(1)
Stereotaxy
15(2)
Nomenclature
17(1)
Detection Devices
18(3)
Brain Maps: Content and Format
21(4)
Summary
25(8)
References
26(7)
Time and Space
John C. Mazziotta
Introduction
33(1)
Critical Variables in Brain Mapping Techniques
34(2)
The Concept of Resolution
36(4)
Sampling
40(3)
Sites Accessed
43(1)
Invasiveness
44(1)
Conclusions
44(5)
References
45(4)
II Surface-Based Data Acquisition
Optical Imaging of Neural Structure and Physiology: Confocal Fluorescence Microscopy in Live Brain Slices
Michael E. Dailey
Introduction
49(2)
Live Brain Slice Preparation and Culture
51(1)
Labeling Neuronal and Glial Cells in Brain Tissue Slices
52(5)
Imaging Methodology
57(4)
Application: Mapping Neural Structure and Physiology in Developing Brain Slices
61(10)
Conclusions and Future Prospects
71(6)
References
73(4)
Voltage and Calcium Imaging of Brain Activity: Examples from the Turtle and the Mouse
Matt Wachowiak
Chun X. Falk
Lawrence B. Cohen
Michal R. Zochowski
Why (and Why Not) Voltage and Calcium Imaging
77(1)
Signal Type
78(1)
Dyes
78(3)
Amplitude of the Voltage or Calcium Change
81(1)
Noise in the Optical Measurements
81(2)
Light Sources
83(1)
Optics
83(1)
Cameras
84(1)
Comparison of Local Field Potential and Voltage-Sensitive Dye Recording
85(1)
Voltage-Sensitive Dye Recording in the Turtle Olfactory Bulb
85(4)
Calcium Dye Recording in the Mouse Olfactory Bulb
89(4)
Intrinsic Imaging and Fluorescence Signals from In Vivo Mammalian Brain
93(1)
Summary and Future Directions
93(4)
References
94(3)
Optical Imaging Based on Intrinsic Signals
Nader Pouratian
Arthur W. Toga
Introduction
97(1)
Sources of Intrinsic Signals and Wavelength Dependency
98(5)
Preparation of an Animal for Optical Imaging
103(4)
The Apparatus
107(5)
Data Acquisition
112(2)
Data Analysis for Mapping Functional Architecture
114(7)
Chronic Optical Imaging
121(2)
Optical Imaging of the Human Neocortex
123(2)
Combining Optical Imaging with Other Techniques
125(5)
Applications
130(5)
Comparison of Intrinsic Optical Imaging with Other Imaging Techniques
135(1)
Conclusions and Outlook
136(5)
References
137(4)
Near-Infrared Spectroscopy and Imaging
Arno Villringer
Hellmuth Obrig
Introduction
141(1)
Optical Window for Noninvasive Studies
142(1)
Other Optical Parameters Relevant for Near-Infrared Studies
143(1)
Technical Approaches for Near-Infrared Spectroscopy and Imaging
143(1)
Physiological Parameters of NIRS Measurements
144(5)
Near-Infrared Spectroscopy and Imaging: Applications
149(2)
Practical Aspects of NIRS Measurements
151(4)
Problems and Perspectives
155(4)
References
156(3)
Dynamic Measurements of Local Cerebral Blood Flow: Examples From Rodent Whisker Barrel Cortex
Thomas A. Woolsey
Ling wei
Joseph P. Erinjeri
Why Measure Local Cerebral Blood Flow?
159(1)
Function and Structural Contexts
160(1)
Global Tracers
161(1)
Volatile Tracers
162(1)
Doppler Flowmetry
163(1)
Video Microscopy
163(1)
Localization of Activity Changes
164(1)
Diameter
165(1)
Intravascular Dyes
166(1)
Intravascular Particles
167(2)
Localization of Flow Changes
169(1)
Conclusions and Prospects
169(6)
References
170(5)
Electrophysiological Imaging of Brain Function
Alan Gevins
Introduction
175(1)
The Electroencephalogram and Averaged Event-Related Potentials
176(3)
Improving the Spatial Resolution of the Electroencephalogram
179(4)
Analysis of Functional Networks
183(2)
The EEG as a Monitoring (vs Imaging) Modality
185(1)
Summary and Conclusions
186(4)
References
186(4)
Electrophysiological Methods for Mapping Brain Motor and Sensory Circuits
Paul D. Cheney
Introduction and Historical Perspective
190(1)
Structural versus Functional Brain Maps
191(1)
Strengths of Electrophysiological Mapping Methods Compared to Other Brain Mapping Methods
191(1)
Contrasts between Sensory Versus Motor System Mapping
192(2)
Output Measures for Mapping Motor System Organization
194(1)
Electrical Stimulation and Other Input Measures for Mapping Motor System Organization
195(2)
Mapping Motor Output with Transcranial Stimulation of Cortex
197(8)
Mapping Motor Output with Electrical Stimulation of the Cortical Surface
205(4)
Mapping Motor Output with Intracortical Microstimulation (ICMS)
209(2)
Mapping Motor Output with High-density Microelectrode Arrays
211(2)
Mapping Motor Output with Spike-Triggered Averaging of EMG Activity from Single Neurons
213(3)
Mapping Motor Output with Stimulus-Triggered Averaging of EMG Activity (Single-Pulse ICMS)
216(3)
Comparison of Results from Spike-Triggered Averaging, Stimulus-Triggered Averaging, and Repetitive ICMS
219(2)
Mapping the Output Terminations of Single Neurons Electrophysiologically
221(1)
The Future of Electrophysiological Mapping
222(5)
References
223(4)
Magnetoencephalographic Characterization of Dynamic Brain Activation: Basic Principles and Methods of Data Collection and Source Analysis
Matti Hamalainen
Ritta Hari
Introduction
227(1)
Generation of Neuromagnetic Fields
228(5)
Instrumentation and Data Acquisition
233(5)
Source Analysis
238(6)
Neuromagnetic Studies
244(4)
Conclusions and Future Directions
248(7)
References
250(5)
Transcranial Magnetic Stimulation
Alvaro Pascual-Leone
Vincent Walsh
Introduction
255(1)
Basic Principles of Magnetic Brain Stimulation
256(7)
TMS in Clinical Neurophysiology
263(7)
TMS in Cognitive Neuroscience
270(9)
TMS Limitations
279(12)
References
285(6)
III Tomographic-Based Data Acquisition
High-Field Magnetic Resonance
Kamil Ugurbil
Introduction
291(1)
Signal-to-Noise Ratio
292(1)
Functional Brain Imaging
293(13)
Spectroscopy at High Magnetic Fields
306(9)
References
311(4)
Functional MRI
Joseph B. Mandeville
Bruce R. Rosen
Introduction
315(1)
MRI: A Brief Primer
316(4)
From MRI to fMRI
320(2)
Physics and Physiology
322(8)
Sensitivity
330(6)
Resolution
336(7)
Structure-Function Integration
343(1)
Future
344(7)
References
344(7)
Magnetic Resonance Spectroscopic Imaging
Andrew A. Maudsley
Introduction
351(1)
Basics of in Vivo MR Spectroscopy
352(5)
MRSI Data Acquiition Methods
357(4)
Data Processing Methods
361(5)
MRSI Data Analysis
366(5)
Applications
371(2)
Emerging Technologies
373(1)
Conclusion
373(6)
References
374(5)
Principles, Methods, and Applications of Diffusion Tensor Imaging
Susumu Mori
Diffusion Measurement by NMR
379(5)
Diffusion Tensor Imaging
384(4)
Data Visualization and Analysis of DTI
388(3)
Application Studies
391(4)
Summary
395(4)
References
395(4)
Neuroanatomical Micromagnetic Resonance Imaging
P. T. Narasimhan
Russell E. Jacobs
Introduction
399(1)
Magnetic Resonance Basics
400(3)
Magnetic Resonance Imaging Basics
403(2)
k Space and MR Images
405(1)
Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR)
406(1)
T1- and T2-Induced Contrasts
407(2)
Diffusion-Weighted, Perfusion, and Water Displacement Imaging
409(2)
Microscopic MRI
411(2)
Micromagnetic Resonance Imaging of the Nervous System
413(6)
Concluding Remarks
419(8)
References
421(6)
CT Angiography and CT Perfusion Imaging
M. H. Lev
R. G. Gonzalez
Introduction
427(4)
Technical Background
431(25)
Scanning Protocols: Acquisition, Postprocessing, Analysis, and Interpretation
456(6)
Clinical Utility
462(14)
Conclusions
476(9)
References
478(7)
Imaging Brain Function with Positron Emission Tomography
Simon R. Cherry
Michael E. Phelps
Introduction
485(1)
Basic Overview and Principles of PET
486(1)
Preparation of Positron-Labeled Compounds
487(2)
PET Scanners
489(5)
PET Data Correction and Image Reconstruction
494(4)
Tracer Kinetic Models
498(3)
Task-Specific Mapping of the Human Brain
501(3)
Mapping Brain Function in Development and Disease
504(2)
High-Resolution PET Studies in Animal Models
506(2)
Summary
508(5)
References
508(5)
SPECT Functional Brain Imaging
Michael D. Devous, Sr.
Introduction
513(1)
Instrumentation
514(6)
Radiopharmaceuticals
520(5)
Factors That Affect Image Appearance
525(3)
Intercomparison of Neuroimaging Techniques for the Quantification of rCBF
528(4)
Radiation Risk Issues
532(1)
Conclusions
533(4)
References
533(4)
IV Postmortem
Postmortem Anatomy
Jacopo Annese
Arthur W. Toga
Introduction
537(1)
The Representation of Anatomy
538(1)
The Specimen
539(2)
Preservation of Anatomical Information
541(2)
Preparing the Specimen for Cutting
543(1)
Histological Slides
544(2)
Histological Methods
546(7)
Anatomical Visualization
553(4)
Quantification
557(1)
3D Reconstruction
558(4)
Epilogue
562(11)
References
564(9)
Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain
Karl Zilles
Axel Schleicher
Nicola Palomero-Gallagher
Katrin Amunts
Introduction
573(2)
Principles of Cytoarchitectonic Analysis
575(4)
Observer-Independent Mapping of the Human Cerebral Cortex
579(8)
Quantitative Autoradiography of Different Receptor Binding Sites
587(11)
Perspectives of Architectonic Mapping
598(7)
References
599(6)
V Analysis
Statistics I: Experimental Design and Statistical Parametric Mapping
Karl J. Friston
Introduction
605(1)
Functional Specialization and Integration
606(1)
Spatial Realignment and Normalization
607(3)
Statistical Parametric Mapping
610(6)
Experimental Design
616(2)
Designing fMRI Studies
618(6)
Inferences about subjects and Populations
624(2)
Effective Connectivity
626(7)
References
630(3)
Statistics II: Correlation of Brain Structure and Function
Roger P. Woods
Introduction
633(2)
Intrasubject Multimodal Integration
635(5)
Clinical Examples of Intrasubject Multimodal Registration
640(9)
Intersubject Multimodal Integration
649(8)
Conclusion
657(4)
References
657(4)
Advanced Nonrigid Registration Algorithms for Image Fusion
Simon K. Warfield
Alexandre Guimond
Alexis Roche
Aditya Bharatha
Alida Tei
Florin Talos
Jan Rexilius
Juan Ruiz-Alzola
Carl-Fredrik Westin
Steven Haker
Sigurd Angenent
Allen Tannenbaum
Ferenc Jolesz
Ron Kikinis
Introduction
661(1)
Intermodality and Multicontrast Images
662(6)
Image Fusion during Neurosurgery with a Biomechanical Model of Brain Deformation
668(6)
Physics-Based Regularization with an Empirical Model of Anatomical Variability
674(3)
Registration of Diffusion Tensor Images
677(6)
The Monge-Kantorovich Problem and Image Registration
683(8)
References
687(4)
Combination of Transcranial Magnetic Stimulation and Brain Mapping
Tomas Paus
Introduction
691(1)
Neurophysiological Underpinnings of the Signal
691(2)
Combination of TMS and Brain Mapping
693(9)
Conclusion
702(5)
References
703(4)
Volume Visualization
Andreas Pommert
Ulf Tiede
Karl Heinz Hohne
Introduction
707(2)
Segmentation
709(2)
Surface Extraction
711(1)
Direct Volume Visualization
712(5)
Visualization of Transformed Data
717(1)
Image Fusion
717(1)
Intelligent Visualization
718(2)
Image Quality
720(1)
Conclusions
720(7)
References
721(6)
VI Databases and Atlases
The International Consortium for Brain Mapping: A Probabilistic Atlas and Reference System for the Human Brain
John Mazziotta
Introduction
727(1)
Motivation for Developing a Probabilistic Human Brain Atlas
728(1)
Strategy and Rationale
729(12)
Methods and Results
741(8)
Other Issues
749(1)
Limitations and Deliverables
749(1)
Conclusions
750(7)
References
751(6)
Subpopulation Brain Atlases
Paul M. Thompson
Michael S. Mega
Arthur W. Toga
Population-Based Brain Imaging
757(2)
Atlases in Brain Mapping
759(2)
Anatomical Modeling
761(5)
Population Maps of the Cortex
766(7)
Brain Averaging
773(2)
Atlas Statistics: Probabilistic Atlases
775(4)
Applications to Development and Disease
779(1)
Dynamic Brain Maps
780(4)
Genetic Brain Maps
784(2)
Subpopulation Selections
786(2)
Conclusions
788(11)
References
788(11)
VII Emerging Concepts
Radionuclide Imaging of Reporter Gene Expression
Gobalakrishnan Sundaresan
Sanjiv S. Gambhir
Overview of Molecular Imaging
799(1)
Instrumentation for Molecular Imaging
800(1)
Reporter Genes
800(1)
Adapting the Reporter Gene Concept for Radionuclide Imaging
801(5)
Application of in Vivo Reporter Gene Imaging to Monitor Gene Therapy Regimens
806(3)
Indirect Imaging of Endogenous Gene Expression through Coupling Endogenous Promoters with Reporter Genes
809(3)
Antisense Reporter Probes for Imaging Endogenous Gene Expression in Vivo
812(1)
Nonradionuclide Approaches to Reporter Gene Imaging
812(1)
Specific Issues for Neuroscience Applications
813(1)
Human Gene Therapy of Brain Tumors and Imaging Studies
813(2)
Conclusion
815(4)
References
815(4)
Mapping Gene Expression by MRI
Angelique Y. Louie
Joseph A. Duimstra
Thomas J. Meade
Introduction
819(1)
MRI Contrast Agents
819(2)
Biochemically Activated MR Contrast Agents
821(2)
Targeted MR Contrast Agents
823(2)
Magnetic Resonance Spectroscopy and Gene Expression
825(2)
Conclusion
827(4)
References
827(4)
Speculations about the Future
John C. Mazziotta
Arthur W. Toga
Introduction
831(1)
Previous Predictions and Their Outcomes
831(9)
New Predictions
840(13)
Conclusion
853(6)
References
853(6)
Index 859


Dr. Mazziotta is a Professor of Neurology, Radiological Sciences, and Pharmacology and the Pierson Lovelace Investigator at UCLA, as well as the Director of the UCLA Brain Mapping Program that he established in 1993. Dr. Mazziotta has published more than 190 research papers and five texts and has received numerous honor and achievement awards including the Oldendorf Award of the American Society of Neuroimaging, the S. Weir Mitchell Award of the American Academy of Neurology, and the Von Hevesy Prize from the International Society of Nuclear Medicine. Dr. Mazziotta has been chair of the Scientific Issues and Program Committee of the American Academy of Neurology. He is the President-Elect of the American Neuroimaging Society and is the President of the Brain Mapping Medical Research Organization. He is also Co-Editor-in-Chief of NeuroImage.