Preface |
|
xi | |
|
1 Statistical Preliminary |
|
|
1 | (26) |
|
1.1 General Linear Models |
|
|
1 | (5) |
|
|
6 | (3) |
|
|
9 | (7) |
|
1.4 Statistical Inference on Fields |
|
|
16 | (11) |
|
2 Brain Network Nodes and Edges |
|
|
27 | (34) |
|
|
27 | (1) |
|
|
28 | (6) |
|
2.3 Deterministic Connectivity |
|
|
34 | (12) |
|
2.4 Probabilistic Connectivity |
|
|
46 | (4) |
|
2.5 Parcellation-Free Brain Network |
|
|
50 | (5) |
|
2.6 Structural Covariates |
|
|
55 | (6) |
|
|
61 | (15) |
|
|
61 | (1) |
|
3.2 Minimum Spanning Trees |
|
|
62 | (3) |
|
|
65 | (5) |
|
|
70 | (1) |
|
3.5 Clustering Coefficient |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
73 | (3) |
|
|
76 | (32) |
|
|
76 | (2) |
|
|
78 | (1) |
|
4.3 Averaging Correlations |
|
|
79 | (6) |
|
4.4 Correlation as Metric |
|
|
85 | (2) |
|
4.5 Statistical Inference on Correlations |
|
|
87 | (2) |
|
4.6 Cosine Series Representation |
|
|
89 | (14) |
|
4.7 Correlating Functional Signals |
|
|
103 | (3) |
|
4.8 Thresholding Correlation Networks |
|
|
106 | (2) |
|
|
108 | (21) |
|
|
108 | (4) |
|
|
112 | (2) |
|
|
114 | (6) |
|
5.4 Computing Large Correlation Matrices |
|
|
120 | (3) |
|
|
123 | (6) |
|
|
129 | (27) |
|
6.1 Multivariate Normal Distributions |
|
|
129 | (7) |
|
6.2 Multivariate Linear Models |
|
|
136 | (7) |
|
|
143 | (6) |
|
6.4 Simulating Dependent Images |
|
|
149 | (3) |
|
6.5 Dependent Correlation Networks |
|
|
152 | (4) |
|
|
156 | (24) |
|
|
157 | (6) |
|
|
163 | (5) |
|
|
168 | (5) |
|
|
173 | (7) |
|
|
180 | (27) |
|
8.1 Diffusion as a Cauchy Problem |
|
|
180 | (4) |
|
8.2 Finite Difference Method |
|
|
184 | (4) |
|
8.3 Laplacian on Planner Graphs |
|
|
188 | (1) |
|
|
189 | (4) |
|
|
193 | (3) |
|
8.6 Heat Kernel Smoothing on Graphs |
|
|
196 | (8) |
|
|
204 | (3) |
|
|
207 | (19) |
|
|
207 | (3) |
|
|
210 | (3) |
|
9.3 Sparse Correlation Network |
|
|
213 | (9) |
|
9.4 Partial Correlation Network |
|
|
222 | (4) |
|
10 Brain Network Distances |
|
|
226 | (20) |
|
|
227 | (2) |
|
|
229 | (2) |
|
10.3 Gromov-Hausdorff Distance |
|
|
231 | (2) |
|
10.4 Kolmogorov-Smirnov Distance |
|
|
233 | (3) |
|
10.5 Performance Analysis |
|
|
236 | (2) |
|
10.6 Comparisons on Modules |
|
|
238 | (3) |
|
|
241 | (5) |
|
11 Combinatorial Inferences for Networks |
|
|
246 | (23) |
|
|
246 | (7) |
|
11.2 Exact Combinatorial Inference |
|
|
253 | (10) |
|
|
263 | (6) |
|
12 Series Expansion of Connectivity Matrices |
|
|
269 | (23) |
|
12.1 Spectral Decomposition |
|
|
269 | (2) |
|
12.2 Iterative Residual Fitting |
|
|
271 | (7) |
|
12.3 Spectral Decomposition with Different Bases |
|
|
278 | (1) |
|
12.4 Spectral Permutation |
|
|
279 | (1) |
|
12.5 Karhunen-Loeve Expansion |
|
|
280 | (3) |
|
12.6 Vandermonde Matrix Expansion |
|
|
283 | (4) |
|
12.7 The Space of Positive Definite Symmetric Matrices |
|
|
287 | (5) |
|
13 Dynamic Network Models |
|
|
292 | (10) |
|
13.1 Dynamic Causal Model |
|
|
293 | (2) |
|
13.2 Dynamic Time Series Models |
|
|
295 | (3) |
|
13.3 Persistent Homological Dynamic Network Model |
|
|
298 | (4) |
Bibliography |
|
302 | (24) |
Index |
|
326 | |