Atjaunināt sīkdatņu piekrišanu

E-grāmata: Brain Network Dysfunction in Neuropsychiatric Illness: Methods, Applications, and Implications

  • Formāts: EPUB+DRM
  • Izdošanas datums: 11-May-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030597979
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 296,82 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 11-May-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030597979
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Brain network function and dysfunction is the dominant model for understanding how the brain gives rise to normal and abnormal behavior. Moreover, neuropsychiatric illnesses continue to resist attempts to reveal an understanding of their bases. Thus, this timely volume provides a synthesis of the uses of multiple analytic methods as they are applied to neuroimaging data, to seek understanding of the neurobiological bases of psychiatric illnesses, understanding that can subsequently aid in their management and treatment. A principle focus is on the analyses and application of methods to functional magnetic resonance imaging (fMRI) data. fMRI remains the most widely used neuroimaging technique for estimating brain network function, and several of the methods covered can estimate brain network dysfunction in resting and task-active states.





Additional chapters provide details on how these methods are (and can be) applied in the understanding of several neuropsychiatric disorders, including schizophrenia, mood disorders, autism, borderline personality disorder, and attention deficit hyperactivity disorder (ADHD). A final complement of chapters provides a collective overview of how this framework continues to provoke theoretical advances in our conception of the brain in psychiatry. This unique volume is designed to be a comprehensive resource for imaging researchers interested in psychiatry, and for psychiatrists interested in advanced imaging applications.
Brain Network Dysconnection in Neuropsychiatric Disorders: the Practice of "Normal Science"
1(18)
Vaibhav A. Diwadkar
Simon B. Eickhoff
Part I Methods
fMRI: Blood Oxygen Level-Dependent Contrast and Its Value for Understanding Functional Brain Networks
19(26)
Peter A. Bandettini
Review of Resting-State Functional Connectivity Methods and Application in Clinical Populations
45(30)
Keerthana Karunakaran
Marie Wolfer
Bharat B. Biswal
Directed Interregional Brain Interactions
75(18)
Steven L. Bressler
Meta-Analytic Connectivity Modelling (MACM): A Tool for Assessing Region-Specific Functional Connectivity Patterns in Task-Constrained States
93(12)
Robert Langner
Julia A. Camilleri
dMRI: Diffusion Magnetic Resonance Imaging as a Window onto Structural Brain Networks and White Matter Microstructure
105(30)
Alard Roebroeck
Data Mining in the Era of Big Data: the BrainMap Database as a Resource for Characterizing Brain Networks in Psychiatric Dlness
135(18)
Katherine L. Bottenhorn
Angela R. Laird
Network Modulation in Neuropsychiatric Disorders Using the Virtual Brain
153(18)
Andrea B. Protzner
Sora An
Viktor Jirsa
Part II Applications
Networks-Mediated Spreading of Pathology in Neurodegenerative Diseases
171(16)
Yasser Iturria-Medina
Alan C. Evans
Resting-State Functional Network Disturbances in Schizophrenia
187(30)
Qingbao Yu
Vince D. Calhoun
Disturbed Brain Networks in the Psychosis High-Risk State?
217(22)
Andre Schmidt
Stefan Borgwardt
Functional Connectivity in Autism Spectrum Disorders: Challenges and Perspectives
239(34)
Ralph-Axel Muller
Annika Linke
Functional Resting-State Network Disturbances in Bipolar Disorder
273(24)
Gwladys Rey
Camille Piguet
Patrik Vuilleumier
An Overview of Resting State Functional Connectivity Studies of Major Depressive Disorder
297(16)
Henry W. Chase
Brain Network Dysfunction in Bipolar Disorder: Evidence from Structural and Functional MRI Studies
313(20)
Giuseppe Delvecchio
Eleonora Maggioni
Letizia Squarcina
Paolo Brambilla
Understanding the Network Bases of ADHD: An Overview of the fMRI Evidence
333(12)
Samuele Cortese
Cortical-Limbic and Default-Mode Networks in Borderline Personality Disorder
345(26)
Annegret Krause-Utz
Christian Schmahl
Structural and Functional Connectivity Changes Following Cognitive Remediation: A Systematic Review
371(26)
H. New Fei
Jordon X. J. Tng
June Su Tan
Kang Sim
Part III Implications
Single-subject Prediction: A Statistical Paradigm for Precision Psychiatry
397(16)
Danilo Bzdok
Teresa M. Karrer
Genetic Imaging: Promises and Pitfalls
413(20)
Thomas Nickl-Jockschat
Tom Wassink
Brain Networks and the Emergence of the Self: A Neurophenomenal Perspective
433(22)
Georg Northoff
Research Domains and Brain Network Dysfunction: Towards a New Taxonomy of Neuropsychiatric Illness
455(20)
Sophia Frangou
Index 475
Dr. Vaibhav Diwadkar is Professor of Psychiatry & Behavioral Neurosciences at Wayne State University School of Medicine. He received his B.A. in Psychology and Computer Science from Coe College, and his PhD in Psychology and Cognitive Science from Vanderbilt University. Following neuroimaging-related fellowships at Carnegie Mellon University and the University of Pittsburgh, he has served on the faculty of the University of Pittsburgh, and at Wayne State University where he has been since 2005. He uses in vivo neuroimaging to understand mechanisms of brain network function (underlying psychological and physiological processes), publishing in the areas of learning, memory, cognition and sensorimotor function, and thermoregulation. His clinical neuroimaging interests lie in understanding brain network dysfunction in psychiatry, leading to publications on schizophrenia, mood disorders, obsessive compulsive disorder, and borderline personality disorder. His research is supportedby the National Institutes of Mental Health, the Children's Research Center of Michigan, the Childrens Hospital of Michigan Foundation, the Ethel and James Flinn Foundation, the DMC Foundation, the Cohen Neuroscience Endowment, the Prechter World Bipolar Foundation, the Jack Dorsey Endowment, and the National Alliance for Research on Schizophrenia and Depression (now the Brain and Behavior Research Foundation).







Simon Eickhoff is a full professor and chair of the Institute for Systems Neuroscience at the Heinrich-Heine University in Düsseldorf and the director of the Institute of Neuroscience and Medicine (INM-7, Brain and Behavior) at the Forschungszentrum Jülich. He is furthermore a visiting professor at the Chinese Academy of Science Institute of Automation. Workig at the interface between neuroanatomy, data-science and brain medicine, the he aims to obtain a more detailed characterization of the organization of the human brain and its inter-individual variability in order to better understand its changes in advanced age as well as neurological and psychiatric disorders. This goal is pursued by the development and application of novel analysis tools and approaches for large-scale, multi-modal analysis of brain structure, function and connectivity as well as by machine-learning for single subject prediction of cognitive and socio-affective traits and ultimately precision medicine.