Atjaunināt sīkdatņu piekrišanu

E-grāmata: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Second International Workshop, BrainLes 2016, with the Challenges on BRATS, ISLES and mTOP 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the thoroughly refereed post-workshop proceedings of the International Workshop on Brain Lesion, as well as the challenges on  Brain Tumor Segmentation (BRATS), Ischemic Stroke Lesion Image Segmentation (ISLES), and the Mild Traumatic Brain Injury Outcome Prediction (mTOP), held in Athens, October 17, 2016, in conjunction with the International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016.

The 26 papers presented in this volume were carefully reviewed.  They present the latest advances in segmentation, disease prognosis and other applications to the clinical context. 

Brain Lesion Image Analysis
Fully Automated Patch-Based Image Restoration: Application to Pathology Inpainting
3(13)
Ferran Prados
M. Jorge Cardoso
Niamh Cowley
Baris Kanber
Olga Ciccarelli
Claudia A.M. Gandini Wheeler-Kingshott
Sebastien Ourselin
Towards a Second Brain Images of Tumours for Evaluation (BITE2) Database
16(7)
I.J. Gerard
C. Couturier
M. Kersten-Oertel
S. Drouin
D. De Nigris
J.A. Hall
K. Mok
K. Petrecca
T. Arbel
D.L. Collins
Topological Measures of Connectomics for Low Grades Glioma
23(9)
Benjamin Amoah
Alessandro Crimi
Multi-modal Registration Improves Group Discrimination in Pediatric Traumatic Brain Injury
32(11)
Emily L. Dennis
Faisal Rashid
Julio Villalon-Reina
Gautam Prasad
Joshua Faskowitz
Talin Babikian
Richard Mink
Christopher Babbitt
Jeffrey Johnson
Christopher C. Giza
Robert F. Asarnow
Paul M. Thompson
An Online Platform for the Automatic Reporting of Multi-parametric Tissue Signatures: A Case Study in Glioblastoma
43(9)
Javier Juan-Albarracin
Elies Fuster-Garcia
Juan M. Garcia-Gomez
A Fast Approach to Automatic Detection of Brain Lesions
52(13)
Subhranil Koley
Chandan Chakraborty
Caterina Mainero
Bruce Fischl
Iman Aganj Brain Tumor Image Segmentation
Improving Boundary Classification for Brain Tumor Segmentation and Longitudinal Disease Progression
65(10)
Ramandeep S. Randhawa
Ankit Modi
Parag Jain
Prashant Warier
Brain Tumor Segmentation Using a Fully Convolutional Neural Network with Conditional Random Fields
75(13)
Xiaomei Zhao
Yihong Wu
Guidong Song
Zhenye Li
Yong Fan
Yazhuo Zhang
Brain Tumor Segmentation with Optimized Random Forest
88(12)
Laszlo Lefkovits
Szidonia Lefkovits
Laszlo Szilagyi
CRF-Based Brain Tumor Segmentation: Alleviating the Shrinking Bias
100(8)
Raphael Meier
Urspeter Knecht
Roland Wiest
Mauricio Reyes
Fully Convolutional Deep Residual Neural Networks for Brain Tumor Segmentation
108(11)
Peter D. Chang
Nabla-net: A Deep Dag-Like Convolutional Architecture for Biomedical Image Segmentation
119(10)
Richard McKinley
Rik Wepfer
Tom Gundersen
Franca Wagner
Andrew Chan
Roland Wiest
Mauricio Reyes
Brain Tumor Segmantation Using Random Forest Trained on Iteratively Selected Patients
129(9)
Abdelrahman Ellwaa
Ahmed Hussein
Essam AlNaggar
Mahmoud Zidan
Michael Zaki
Mohamed A. Ismail
Nagia M. Ghanem
DeepMedic for Brain Tumor Segmentation
138(12)
Konstantinos Kamnitsas
Enzo Ferrante
Sarah Parisot
Christian Ledig
Aditya V. Nori
Antonio Criminisi
Daniel Rueckert
Ben Glocker
3D Convolutional Neural Networks for Brain Tumor Segmentation: A Comparison of Multi-resolution Architectures
150(12)
Adria Casamitjana
Santi Puch
Asier Aduriz
Veronica Vilaplana
Anatomy-Guided Brain Tumor Segmentation and Classification
162(9)
Bi Song
Chen-Rui Chou
Xiaojing Chen
Albert Huang
Ming-Chang Liu
Lifted Auto-Context Forests for Brain Tumour Segmentation
171(13)
Loic Le Folgoc
Aditya V. Nori
Siddharth Ancha
Antonio Criminisi
Segmentation of Gliomas in Pre-operative and Post-operative Multimodal Magnetic Resonance Imaging Volumes Based on a Hybrid Generative-Discriminative Framework
184(11)
Ke Zeng
Spyridon Bakas
Aristeidis Sotiras
Hamed Akbari
Martin Rozycki
Saima Rathore
Sarthak Pati
Christos Davatzikos
Interactive Semi-automated Method Using Non-negative Matrix
Factorization and Level Set Segmentation for the BRATS Challenge
195(11)
Dimah Dera
Fabio Raman
Nidhal Bouaynaya
Hassan M. Fathallah-Shaykh
Brain Tumor Segmentation by Variability Characterization of Tumor Boundaries
206(13)
Edgar A. Rios Piedra
Benjamin M. Ellingson
Ricky K. Taira
Suzie El-Saden
Alex A.T. Bui
William Hsu
Ischemic Stroke Lesion Image Segmentation
Predicting Stroke Lesion and Clinical Outcome with Random Forests
219(12)
Oskar Maier
Heinz Handels
Ensemble of Deep Convolutional Neural Networks for Prognosis of Ischemic Stroke
231(13)
Youngwon Choi
Yongchan Kwon
Hanbyul Lee
Beam Joon Kim
Myunghee Cho Paik
Joong-Ho Won
Prediction of Ischemic Stroke Lesion and Clinical Outcome in Multi-modal MRI Images Using Random Forests
244(15)
Qaiser Mahmood
A. Basit
Mild Traumatic Brain Injury Outcome Prediction
Combining Deep Learning Networks with Permutation Tests to Predict Traumatic Brain Injury Outcome
259(12)
Y. Cai
S. Ji
Mild Traumatic Brain Injury Outcome Prediction Based on Both Graph and K-nn Methods
271(11)
R. Bellotti
A. Lombardi
C. Guaragnella
N. Amoroso
A. Tateo
S. Tangaro
Unsupervised 3-D Feature Learning for Mild Traumatic Brain Injury
282(9)
Po-Yu Kao
Eduardo Rojas
Jefferson W. Chen
Angela Zhang
B.S. Manjunath
Author Index 291