Atjaunināt sīkdatņu piekrišanu

Brauer Groups and Obstruction Problems: Moduli Spaces and Arithmetic Softcover reprint of the original 1st ed. 2017 [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 247 pages, height x width: 235x155 mm, weight: 3985 g, IX, 247 p., 1 Paperback / softback
  • Sērija : Progress in Mathematics 320
  • Izdošanas datums: 18-Jul-2018
  • Izdevniecība: Birkhauser Verlag AG
  • ISBN-10: 3319836013
  • ISBN-13: 9783319836010
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 136,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 160,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 247 pages, height x width: 235x155 mm, weight: 3985 g, IX, 247 p., 1 Paperback / softback
  • Sērija : Progress in Mathematics 320
  • Izdošanas datums: 18-Jul-2018
  • Izdevniecība: Birkhauser Verlag AG
  • ISBN-10: 3319836013
  • ISBN-13: 9783319836010
Citas grāmatas par šo tēmu:
The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory.

Contributors:



· Nicolas Addington





· Benjamin Antieau





· Kenneth Ascher

· Asher Auel





· Fedor Bogomolov





· Jean-Louis Colliot-Thélčne





· Krishna Dasaratha





· Brendan Hassett





· Colin Ingalls





· Martķ Lahoz





· Emanuele Macrģ





· Kelly McKinnie





· Andrew Obus





· Ekin Ozman





· Raman Parimala





· Alexander Perry





· Alena Pirutka





· Justin Sawon





· Alexei N. Skorobogatov





· Paolo Stellari





· Sho Tanimoto





· Hugh Thomas





· Yuri Tschinkel





· Anthony Vįrilly-Alvarado





· Bianca Viray





· Rong Zhou

The Brauer group is not a derived invariant.- Twisted derived equivalences for affine schemes.- Rational points on twisted K3 surfaces and derived equivalences.- Universal unramified cohomology of cubic fourfolds containing a plane.- Universal spaces for unramified Galois cohomology.- Rational points on K3 surfaces and derived equivalence.- Unramified Brauer classes on cyclic covers of the projective plane.- Arithmetically Cohen-Macaulay bundles on cubic fourfolds containing a plane.- Brauer groups on K3 surfaces and arithmetic applications.- On a local-global principle for H3 of function fields of surfaces over a finite field.- Cohomology and the Brauer group of double covers.