About the Authors |
|
ix | |
|
1 Introduction of Bridge Engineering |
|
|
1 | (30) |
|
|
1 | (2) |
|
|
3 | (2) |
|
1.3 Bridge Classification |
|
|
5 | (22) |
|
1.4 Selection of Bridge Types |
|
|
27 | (2) |
|
|
29 | (2) |
|
|
30 | (1) |
|
2 Bridge Planning and Design |
|
|
31 | (28) |
|
|
31 | (1) |
|
2.2 Bridge Design Philosophy |
|
|
31 | (2) |
|
|
33 | (1) |
|
2.4 Bridge Planning and Geometric Design |
|
|
33 | (2) |
|
2.5 Bridge Design Methods |
|
|
35 | (2) |
|
2.6 Earthquake- and Wind-Resistant Designs |
|
|
37 | (12) |
|
2.7 Bridge Design Specifications |
|
|
49 | (2) |
|
2.8 Structural Design and Design Drawings |
|
|
51 | (1) |
|
2.9 Bridge Esthetic Design and a Case Study |
|
|
51 | (4) |
|
|
55 | (4) |
|
|
56 | (3) |
|
3 Materials for Bridge Constructions |
|
|
59 | (12) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
61 | (3) |
|
|
64 | (2) |
|
3.6 New Composite Materials |
|
|
66 | (1) |
|
3.7 Case Study---A Famous Timber Bridge in Japan and Its Assessment |
|
|
66 | (3) |
|
|
69 | (2) |
|
|
69 | (2) |
|
4 Loads and Load Distribution |
|
|
71 | (8) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
72 | (6) |
|
|
78 | (1) |
|
|
79 | (6) |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
81 | (1) |
|
4.10 Creep and Shrinkage of Concrete |
|
|
82 | (1) |
|
4.11 Combination of Loads for Bridge Design |
|
|
82 | (1) |
|
|
82 | (3) |
|
|
83 | (2) |
|
|
85 | (12) |
|
|
85 | (1) |
|
5.2 Layout of the Deck Surface |
|
|
85 | (2) |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
89 | (1) |
|
5.6 Bridge Expansion Joint |
|
|
90 | (2) |
|
5.7 Unseating Prevention System |
|
|
92 | (3) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
6 Reinforced and Prestressed Concrete Bridges |
|
|
97 | (14) |
|
|
97 | (1) |
|
|
98 | (2) |
|
6.3 Reinforced Concrete Bridges |
|
|
100 | (4) |
|
6.4 Prestressed Concrete Bridges |
|
|
104 | (6) |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
111 | (26) |
|
|
111 | (1) |
|
|
111 | (3) |
|
7.3 Steel-Concrete Composite Bridges |
|
|
114 | (11) |
|
7.4 Case Study---A Research on Steel---Concrete Composite Beams Subjected to Hogging Moment |
|
|
125 | (10) |
|
|
135 | (1) |
|
|
135 | (2) |
|
|
135 | (2) |
|
|
137 | (18) |
|
|
137 | (1) |
|
8.2 Truss Bridge Terminology |
|
|
138 | (3) |
|
|
141 | (4) |
|
8.4 The Design of Truss Bridges |
|
|
145 | (3) |
|
8.5 Case Study---Tokyo Gate Bridge |
|
|
148 | (3) |
|
|
151 | (4) |
|
|
153 | (2) |
|
|
155 | (20) |
|
|
155 | (1) |
|
|
156 | (1) |
|
9.3 Arch Bridge Classification |
|
|
157 | (8) |
|
9.4 Erection of Arch Bridges |
|
|
165 | (5) |
|
9.5 Case Study: Preservation of Masonry Arch Bridges |
|
|
170 | (2) |
|
|
172 | (3) |
|
|
173 | (2) |
|
|
175 | (20) |
|
|
175 | (1) |
|
10.2 Cable-Stayed Bridge Classification |
|
|
176 | (8) |
|
|
184 | (7) |
|
10.4 Analysis of Cable-Stayed Bridges |
|
|
191 | (1) |
|
10.5 Construction of Cable-Stayed Bridges |
|
|
191 | (3) |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (18) |
|
|
195 | (1) |
|
11.2 Structural Components |
|
|
196 | (1) |
|
11.3 Suspension Bridge Classification |
|
|
197 | (6) |
|
|
203 | (5) |
|
11.5 Analysis of Suspension Bridges |
|
|
208 | (1) |
|
11.6 Suspension Bridge Construction |
|
|
209 | (1) |
|
|
210 | (3) |
|
|
211 | (2) |
|
12 Bridge Bearings and Substructures |
|
|
213 | (14) |
|
|
213 | (1) |
|
|
214 | (7) |
|
|
221 | (2) |
|
|
223 | (1) |
|
|
224 | (2) |
|
|
226 | (1) |
|
|
226 | (1) |
|
13 Inspection, Monitoring, and Assessment |
|
|
227 | (18) |
|
|
227 | (1) |
|
|
227 | (6) |
|
|
233 | (3) |
|
13.4 Structural Assessment |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
238 | (5) |
|
|
|
243 | (2) |
|
14 Repair, Strengthening, and Replacement |
|
|
245 | (28) |
|
|
245 | (2) |
|
14.2 Repair and Strengthening of Concrete Bridges |
|
|
247 | (2) |
|
14.3 Repair and Strengthening of Steel Bridges |
|
|
249 | (6) |
|
|
255 | (1) |
|
14.5 Case Study: A Strengthening Method for Railways Bridges in Japan |
|
|
256 | (14) |
|
|
270 | (3) |
|
|
270 | (3) |
Index |
|
273 | |