Preface |
|
xi | |
Acknowledgments |
|
xv | |
|
1 Neurophysiology of the Human Scalp EEG |
|
|
1 | (24) |
|
|
2 | (6) |
|
1.1.1 Dipole Source Model |
|
|
4 | (2) |
|
1.1.2 Distributed Source Model |
|
|
6 | (2) |
|
|
8 | (2) |
|
|
10 | (3) |
|
1.3.1 Physiologic Artifacts |
|
|
10 | (2) |
|
1.3.2 Extraphysiologic Artifacts |
|
|
12 | (1) |
|
1.4 Electrode Placement Systems |
|
|
13 | (3) |
|
|
13 | (2) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
18 | (7) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
23 | (2) |
|
|
25 | (26) |
|
|
25 | (13) |
|
2.1.1 Impulse Response Filter |
|
|
27 | (5) |
|
2.1.2 Butterworth Low-Pass Filter |
|
|
32 | (3) |
|
2.1.3 Gaussian Low-Pass Filter |
|
|
35 | (1) |
|
|
36 | (2) |
|
2.2 Decomposition Techniques |
|
|
38 | (13) |
|
2.2.1 Principal Component Analysis |
|
|
38 | (2) |
|
2.2.2 Independent Component Analysis |
|
|
40 | (7) |
|
2.2.3 Gist of PCA and ICA Comparison |
|
|
47 | (1) |
|
|
48 | (3) |
|
|
51 | (26) |
|
|
51 | (18) |
|
3.1.1 Boundary Element Method |
|
|
51 | (1) |
|
3.1.1.1 Dipole Source Model |
|
|
52 | (5) |
|
3.1.1.2 Distributed Source Model |
|
|
57 | (2) |
|
3.1.2 Finite Element Method |
|
|
59 | (4) |
|
3.1.3 Finite Difference Method |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
65 | (3) |
|
3.1.4 Comparison among Methods |
|
|
68 | (1) |
|
|
69 | (8) |
|
3.2.1 Weighted Minimum Norm Inverse |
|
|
69 | (2) |
|
|
71 | (2) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
75 | (2) |
|
4 Event-Related Potential |
|
|
77 | (16) |
|
|
77 | (4) |
|
4.2 Measuring ERP Amplitudes |
|
|
81 | (2) |
|
|
81 | (2) |
|
|
83 | (1) |
|
4.3 Measuring ERP Latencies |
|
|
83 | (2) |
|
|
83 | (1) |
|
4.3.2 Fractional Area Latency |
|
|
84 | (1) |
|
|
85 | (8) |
|
|
85 | (3) |
|
|
88 | (3) |
|
|
91 | (2) |
|
|
93 | (24) |
|
|
94 | (23) |
|
5.1.1 Phase Synchronization |
|
|
96 | (1) |
|
5.1.1.1 Hilbert Transformation Based |
|
|
97 | (6) |
|
5.1.1.2 Wavelet Transformation Based |
|
|
103 | (2) |
|
5.1.1.3 Fourier Transformation Based |
|
|
105 | (2) |
|
5.1.2 Other Synchronizations |
|
|
107 | (2) |
|
5.1.3 Multivariate Analysis |
|
|
109 | (6) |
|
|
115 | (2) |
|
|
117 | (36) |
|
6.1 Automatic Seizure Detection |
|
|
117 | (19) |
|
6.1.1 Template-Based Seizure Detection |
|
|
119 | (1) |
|
6.1.1.1 Feature Extraction |
|
|
119 | (2) |
|
6.1.1.2 Representation of Seizure Onset Patterns |
|
|
121 | (2) |
|
|
123 | (1) |
|
|
124 | (1) |
|
6.1.2 Transformation-Based Detection |
|
|
125 | (4) |
|
6.1.3 Operator-Based Detection |
|
|
129 | (2) |
|
6.1.3.1 False-Detection Avoidance |
|
|
131 | (5) |
|
|
136 | (2) |
|
|
138 | (5) |
|
|
143 | (4) |
|
|
147 | (6) |
|
|
150 | (3) |
|
7 Brain-Computer Interface |
|
|
153 | (44) |
|
7.1 Preprocessing and Signal Enhancement |
|
|
155 | (1) |
|
7.2 Frequency Domain Features |
|
|
156 | (6) |
|
|
162 | (1) |
|
|
163 | (3) |
|
7.5 Translation Algorithms |
|
|
166 | (31) |
|
7.5.1 Fisher's Linear Discriminant |
|
|
166 | (10) |
|
7.5.2 Logistic Regression |
|
|
176 | (2) |
|
7.5.3 Support Vector Machine |
|
|
178 | (10) |
|
|
188 | (5) |
|
|
193 | (2) |
|
|
195 | (2) |
|
|
197 | (24) |
|
8.1 Magnetic Resonance Imaging |
|
|
197 | (13) |
|
8.1.1 T1-Weighted Imaging |
|
|
198 | (4) |
|
8.1.2 T2-Weighted Imaging |
|
|
202 | (3) |
|
8.1.3 Spatial Localization |
|
|
205 | (5) |
|
8.2 Imaging Functional Activity |
|
|
210 | (1) |
|
|
211 | (1) |
|
8.4 Interpreting the BOLD Response |
|
|
212 | (9) |
|
|
219 | (2) |
|
9 Simultaneous EEG and fMRI |
|
|
221 | (26) |
|
|
222 | (10) |
|
9.1.1 fMRI Gradient Artifact |
|
|
223 | (7) |
|
9.1.2 Cardioballistogram and Blood Flow Effect |
|
|
230 | (2) |
|
|
232 | (2) |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
234 | (13) |
|
9.3.1 Converging Evidence |
|
|
235 | (3) |
|
|
238 | (2) |
|
9.3.3 Computational Neural Modeling |
|
|
240 | (3) |
|
|
243 | (4) |
Appendix A Fourier Transformation |
|
247 | (6) |
Appendix B Wavelet Transformation |
|
253 | (4) |
Index |
|
257 | |