Preface |
|
xi | |
Acknowledgements |
|
xiii | |
Authors |
|
xv | |
|
|
1 | (8) |
|
1.1 Geospatial Technologies |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.3 Geospatial Machine Learning |
|
|
3 | (2) |
|
|
5 | (1) |
|
1.5 Three-Dimensional Mapping |
|
|
6 | (3) |
|
|
7 | (2) |
|
Chapter 2 Geospatial Big Data for Machine Learning |
|
|
9 | (24) |
|
|
9 | (2) |
|
2.2 Machine Learning Framework for Geospatial Big Data |
|
|
11 | (2) |
|
|
13 | (5) |
|
2.3.1 USGS - NASA's Mission |
|
|
13 | (2) |
|
2.3.2 Copernicus Missions |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
2.4 The Challenge with EO Data |
|
|
18 | (1) |
|
|
18 | (2) |
|
2.6 Choosing the Right Data |
|
|
20 | (13) |
|
|
27 | (6) |
|
Chapter 3 Spatial Feature Extraction |
|
|
33 | (34) |
|
|
33 | (1) |
|
3.2 Machine Learning Models |
|
|
33 | (15) |
|
3.2.1 Maximum Likelihood Classifiers |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
36 | (2) |
|
|
38 | (3) |
|
|
41 | (3) |
|
3.2.6 Convolutional Neural Networks |
|
|
44 | (4) |
|
3.3 Deep Learning Architecture |
|
|
48 | (3) |
|
|
51 | (3) |
|
|
52 | (1) |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
54 | (4) |
|
3.5.1 Image Pre-Processing |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
3.5.4 Accuracy Evaluation |
|
|
56 | (2) |
|
3.6 Findings and Conclusions |
|
|
58 | (9) |
|
|
61 | (6) |
|
Chapter 4 Building Height Estimation |
|
|
67 | (16) |
|
4.1 Significance of Building Height |
|
|
67 | (1) |
|
|
68 | (2) |
|
4.3 Estimation of Height from Stereo Satellite Images |
|
|
70 | (6) |
|
4.3.1 Stereo Satellite Images |
|
|
71 | (1) |
|
4.3.2 Surface Model Preparation |
|
|
72 | (1) |
|
4.3.3 DSM Quality Evaluation |
|
|
73 | (1) |
|
4.3.4 Preparation of a Terrain Model |
|
|
74 | (1) |
|
|
74 | (1) |
|
4.3.4.2 Grid-Based Method |
|
|
74 | (1) |
|
|
75 | (1) |
|
4.3.4.4 Slope-Based Filter |
|
|
75 | (1) |
|
|
75 | (1) |
|
4.4 Estimating the Height of a Building |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
76 | (1) |
|
4.5 Height Estimations and Quality Evaluation |
|
|
77 | (2) |
|
4.5.1 DSM Quality Evaluation |
|
|
77 | (1) |
|
4.5.2 DTM Quality Evaluation |
|
|
78 | (1) |
|
4.5.3 Building Height Values |
|
|
78 | (1) |
|
4.6 Future Scope of Height Estimations |
|
|
79 | (4) |
|
|
80 | (3) |
|
Chapter 5 3D Feature Mapping |
|
|
83 | (16) |
|
5.1 3D Mapping from Geospatial Data |
|
|
83 | (1) |
|
5.2 History of 3D Mapping |
|
|
84 | (1) |
|
5.3 Data Standards and Interoperability |
|
|
85 | (3) |
|
5.4 Data Sources for 3D Mapping |
|
|
88 | (1) |
|
5.5 Software Tools for 3D Mapping |
|
|
89 | (1) |
|
|
90 | (9) |
|
|
93 | (6) |
|
Chapter 6 Application Use Cases |
|
|
99 | (26) |
|
6.1 Potential Applications |
|
|
99 | (1) |
|
6.2 Case Study #1: Urban Structure Extraction - An Indian Context |
|
|
100 | (6) |
|
|
102 | (1) |
|
|
103 | (1) |
|
|
104 | (1) |
|
6.2.4 Results and Conclusions |
|
|
104 | (2) |
|
6.3 Case Study #2: Rooftop Solar Potential Estimation |
|
|
106 | (9) |
|
|
107 | (2) |
|
6.3.2 UAV or Drone-Captured Imagery |
|
|
109 | (1) |
|
6.3.3 Building Roof Extraction |
|
|
110 | (1) |
|
|
110 | (2) |
|
|
112 | (3) |
|
6.4 Case Study #3: Assessment of Urban Built-Up Volume |
|
|
115 | (10) |
|
6.4.1 Study Area and Datasets |
|
|
116 | (1) |
|
|
116 | (1) |
|
|
117 | (2) |
|
6.4.4 Built-Up Area Extraction |
|
|
119 | (1) |
|
6.4.5 Built-Up Volume Estimation |
|
|
120 | (1) |
|
6.4.6 Inference and Conclusions |
|
|
121 | (1) |
|
|
122 | (3) |
Index |
|
125 | |