Atjaunināt sīkdatņu piekrišanu

E-grāmata: Building a Low-Carbon Future: Adaptive Control Strategies for Distributed Energy Networks

  • Formāts - PDF+DRM
  • Cena: 142,75 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book aims to emphasize the state-of-the-art research in realizing the optimal synthesis of microgrid voltage regulation problems using adaptive multi-agent control theory. The contents of this book are divided into four parts. The book describes the microgrid voltage regulation model construction. Building upon this foundation, the book investigates fault-tolerant and event-triggered control problems under different constraints. The effectiveness and applicability of the design methods are verified by simulation arithmetic and applications.

The key features of this book are summarized as follows.1) Development of a unified modeling framework for the analysis and design of voltage regulation protocols. 2) Utilization of a novel approach to analyze microgrid secondary control systems, addressing various issues such as event triggering and fault-tolerant control problems. 3) A set of newly developed techniques (e.g., Lyapunov stability theory, LMI techniques) is used to addressemerging voltage regulation challenges.

This book is a timely reflection of developments in the new field of integrated theory of voltage regulation and multi-agent system control for microgrids. It serves as a comprehensive collection of the latest research findings, making it a valuable textbook for senior and graduate students who are interested in acquiring knowledge about the following: 1) the latest techniques in microgrid voltage regulation; 2) the latest advances in multi-agent system control; and 3) the latest advances in stability/performance analysis, tracking control, fault-tolerant control, event-triggered

control, and adaptive control. The content of this monograph is divided into six parts. 1) Part one studies the classical problems of microgrid control and multi-agent control. 2) Part two focuses on the event-triggered fault-tolerant voltage restoration problem for islanded microgrids. 3) Part three addresses the fully distributed fault-tolerant secondary event-triggered control of microgrids under directed graphs. 4) Part four examines the output feedback-based fault-tolerant load voltage regulation problem using intermittent communication. 5) Part five presents the secondary load voltage and frequency regulation control based on hierarchical fault-tolerant containment control. 5) Part six investigates the distributed critical bus voltage regulation control problem for multiple microgrids with a positive minimum inter-event time.
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Basic Structure of MG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Hierarchical Control Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Primary Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Secondary Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Tertiary control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Multi-agent control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Fault-tolerant control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Event-triggered control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Publication Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Cooperative Event-Triggered Fault-Tolerant Voltage

Restoration in Islanded AC Microgrids . . . . . . . . . . . . . . . . . . . 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Problem Formulation and Preliminaries . . . . . . . . . . . . . . . . . . . 15

2.2.1 System Model of an MG for Secondary Voltage Control 16

2.3 DISTRIBUTED ADAPTIVE ETFT PROTOCOL . . . . . . . . . . 19

2.3.1 Protocol Design Framework . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Consensus Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Zeno Phenomenon Exclusion . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Case 1: Effectiveness Evaluation for the ETFT

Control Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Case 2: Fault Tolerance Evaluation and PIPO

Capability for the ETFT Control Protocol . . . . . . . . . . 31

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Fully Distributed Fault-Tolerant Event-Triggered Control

of Microgrids Under Directed Graphs . . . . . . . . . . . . . . . . . . . . 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 MODELING FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xiii

xiv Contents

3.3 ADAPTIVE ETFT VOLTAGE RESTORATION CONTROL 35

3.4 SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Case 1: Effectiveness Evaluation . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Case 2: Changes in Fault and PIPO Capability . . . . . . . 49

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Output-Feedback Consensus Fault-Tolerant Control

With Intermittent Communication to Achieve Load

Voltage Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 MG System Large-Signal Dynamical Model . . . . . . . . . . 51

4.1.2 Notation and Graph Theory . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.3 Fuzzy Logic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 DISTRIBUTED OBEDFT LOAD VOLTAGE

REGULATION CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Nodes Dynamics and Fault Model . . . . . . . . . . . . . . . . . . 54

4.2.2 Design of Distributed OBEDFT Secondary Voltage

Control Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Case 1: Voltage Regulation Effectiveness . . . . . . . . . . . . 68

4.3.2 Case 2: PIPO Capability . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Secondary Load Voltage and Frequency Fault-Tolerant

Regulation Control via Hierarchical Mechanism . . . . . . . . . . 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 PROBLEM STATEMENT AND PRELIMINARIES. . . . . . . . 74

5.2.1 Preliminaries on graph theory . . . . . . . . . . . . . . . . . . . . . . 74

5.2.2 Modeling Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.3 Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Design of Secondary Control Strategy . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 The Containment-Based Load Voltage Regulation

Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 The Consensus-Based Frequency Restoration . . . . . . . . 85

5.3.3 The Consensus-Based Active Power Control . . . . . . . . . 86

5.4 SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Distributed Critical Bus Voltage Regulation Control for

Multi-Microgrids with Positive Minimum Inter-Event

Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 MODELING FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 MAIN RESULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.1 Fuzzy Logic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Contents xv

6.3.2 The Containment-Based Critical Bus Voltage Regular

Control with MIET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111