Atjaunināt sīkdatņu piekrišanu

E-grāmata: Calcium Transport Elements in Plants

Edited by (Assistant Professor, Department of Botany, Panjab University, Chandigarh, India)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 08-Jan-2021
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128217931
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 216,96 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 08-Jan-2021
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128217931
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Calcium Transport Elements in Plants discusses the role of calcium in plant development and stress signaling, the mechanism of Ca2+ homeostasis across plant membranes, and the evolution of Ca2+/cation antiporter (CaCA) superfamily proteins. Additional sections cover genome-wide analysis of Annexins and their roles in plants, the roles of calmodulin in abiotic stress responses, calcium transport in relation to plant nutrition/biofortification, and much more. Written by leading experts in the field, this title is an essential resource for students and researchers that need all of the information on calcium transport elements in one place.

Calcium transport elements are involved in various structural, physiological and biochemical processes or signal transduction pathways in response to various abiotic and biotic stimuli. Development of high throughput sequencing technology has favored the identification and characterization of numerous gene families in plants in recent years, including the calcium transport elements.

  • Provides a complete compilation of detailed information on Ca2+ efflux and influx transporters in plants
  • Discusses the mode of action of calcium transport elements and their classification
  • Explores the indispensable role of Ca2+ in numerous developmental and stress related pathways
Contributors xix
Preface xxiii
Acknowledgments xxv
About the editor xxvii
1 An introduction to the calcium transport elements in plants
Mehak Taneja
Santosh Kumar Upadhyay
1.1 Introduction
1(1)
1.2 Ca2+ efflux mechanisms
2(5)
1.2.1 Ca2+exchangers
2(4)
1.2.2 Ca2+-ATPases
6(1)
1.3 Ca2+ influx mechanisms
7(4)
1.3.1 Ca2+channels
8(3)
1.4 Ca2+-binding proteins
11(1)
1.5 Concluding remarks
12(7)
Acknowledgments
12(1)
References
13(6)
2 Calcium--cytoskeleton signaling--induced modification of plant development
Samir Sharma
2.1 Introduction
19(2)
2.1.1 Prelude
19(1)
2.1.2 Origin of life and primary geochemical events
19(1)
2.1.3 Eukaryotic life and divergence of plants and animals
20(1)
2.2 The "simple complexity" of calcium
21(4)
2.2.1 Calcium: occurrence and availability
21(1)
2.2.2 Calcium as an agent of change in biological systems
22(3)
2.3 Cytoskeleton: elements and organization
25(4)
2.3.1 Special features of plant cells reflect in differences in cytoskeleton
25(1)
2.3.2 Control of plant cytoskeletal organization
26(1)
2.3.3 Cytoskeleton in plant development
27(2)
2.4 Calcium signaling--mediated control of cytoskeletal organization
29(5)
2.4.1 Ca2+--actin interactions
29(4)
2.4.2 Ca2+--microtubule interactions
33(1)
2.5 Concluding remarks
34(5)
References
35(4)
3 Mechanism of Ca2+ homeostasis across the plant membranes
Poonam Kanwar
3.1 Introduction
39(1)
3.2 Categorization of various calcium transport elements in the cell
40(2)
3.3 Calcium homeostasis in main calcium stores of plant cell
42(3)
3.3.1 Calcium and apoplast
43(1)
3.3.2 Calcium homeostasis in the vacuolar membrane
43(2)
3.3.3 Calcium and endoplasmic reticulum
45(1)
3.4 Calcium and other organelles
45(2)
3.4.1 Mitochondria
46(1)
3.4.2 Chloroplast
46(1)
3.4.3 Nucleus
47(1)
3.4.4 Golgi bodies
47(1)
3.4.5 Peroxisome
47(1)
3.5 The journey of calcium homeostasis to calcium signaling
47(1)
3.6 Conclusion and future perspective
48(7)
Acknowledgment
50(1)
References
50(5)
4 Calcium transport elements in model and crop plants
Vinay Kumar Baranwal
4.1 Introduction
55(1)
4.2 Cyclic nucleotide--gated channels
56(1)
4.3 Annexins
56(1)
4.4 Two-pore channels
57(1)
4.5 Mechanosensitive channels
57(1)
4.6 Other mechanosensitive channels
58(4)
4.6.1 Hyperosmolality-gated calcium permeable channels
58(1)
4.6.2 Glutamate receptor-like genes
59(1)
4.6.3 Ca2+ extrusion systems
59(1)
4.6.4 Ca2+-ATPases
60(1)
4.6.5 Ca2+ exchangers
60(2)
4.7 Conclusions
62(7)
References
63(6)
5 Evolution of Ca2+ transporters in plants
Devesh Shukla
5.1 Introduction
69(1)
5.2 Evolution of P-type Ca2+-ATPases
70(4)
5.2.1 P-type 2B Ca2+-ATPases
70(2)
5.2.2 P-type 2A Ca2+-ATPase
72(2)
5.3 CaCA (Ca2+ cation antiporter)
74(4)
5.4 Calcium (Ca2+) influx channel
78(11)
Acknowledgment
82(1)
References
83(6)
6 Cation/H+ exchanger in plants: roles in development and stress response
Soma Ghosh
Saroj K. Jha
Girdhar K. Pandey
6.1 Introduction
89(2)
6.2 Phylogenetic diversity of CAX protein
91(1)
6.3 Structural analysis of CAXs
92(2)
6.4 Functional characterization of CAXs in yeast heterologous system
94(1)
6.5 Physiological functions of CAX proteins
95(2)
6.5.1 Regulation of stomatal movements
95(1)
6.5.2 Abiotic stress signaling
96(1)
6.5.3 Graviresponse kinetics
97(1)
6.5.4 Role in metal remediation
97(1)
6.6 Biotechnological significance of CAX transporters
97(1)
6.7 Conclusions and future perspectives
98(5)
Acknowledgment
98(1)
References
98(5)
7 Role of plant Ca2+-ATPase in calcium homeostasis during development and stresses
Akhilesh Kumar Yadav
7.1 Introduction
103(26)
7.2 P-type ATPase: classification
105(1)
7.3 Plant Ca2+-ATPase: classification
106(1)
7.4 Plant Ca2+-ATPase: structure
107(1)
7.5 Plant Ca2+-ATPases: regulation
107(3)
7.6 Plant Ca2+-ATPase: subcellular localization
110(4)
7.7 Plant Ca2+ ATPase: role in growth and development
114(1)
7.8 Plant Ca2+-ATPases: role in abiotic stress
115(2)
7.9 Plant Ca2+-ATPases: role in biotic stress
117(1)
7.10 Plant Ca2+ ATPase: role in nutrition and mineral toxicity
118(1)
7.11 Plant Ca2+-ATPase: other physiological functions
119(1)
7.12 Conclusions and future prospective
120(9)
References
121(8)
8 Cation/Ca2+ exchanger protein's function in plants
Er. Brajendra Shukla
Rajshree Singh
8.1 Introduction
129(4)
8.2 The CCX family
133(6)
8.2.1 Redundant action of CCX1 and CCX4 during senescence
133(3)
8.2.2 CCX2 expression during salt and osmotic stresses
136(1)
8.2.3 Endomembrane-localized CCX3
137(1)
8.2.4 High-affinity K+ transporter, CCX5
138(1)
8.3 Conclusions
139(4)
References
140(3)
9 The Na+/Ca2+ exchanger-like proteins from plants: an overview
Sonal Mishra
Skalzang Lhamo
Aksar Ali Chowdhary
Shakti Mehrotra
Vikas Srivastava
9.1 Introduction
143(2)
9.2 Na+/Ca2+ exchanger-like gene/protein
145(6)
9.3 Na+/Ca2+ exchanger-like in plant genome
151(1)
9.4 Na+/Ca2+ exchanger-like expression studies
152(1)
9.5 Function of Na+/Ca2+ exchanger-like proteins
153(1)
9.6 Conclusion
154(3)
Acknowledgment
154(1)
References
154(3)
10 Calcium channels and transporters in plants under salinity stress
Jiahao Liu
Jin Hu
Yanhui Li
Cuangjing Li
Honghong Wu
10.1 Introduction
157(1)
10.2 Cytoplasm Ca2+ efflux system
158(2)
10.2.1 Ca2+-ATPase
158(2)
10.2.2 Ca2+exchangers
160(1)
10.3 Cytoplasm Ca2+ influx system
160(2)
10.3.1 Calcium channels located on plasma membrane
160(2)
10.3.2 Calcium channels on organelle membrane
162(1)
10.4 The response of calcium transport system in plants under salinity stress
162(2)
10.5 Conclusion
164(7)
Acknowledgment
164(1)
References
164(7)
11 An overview of annexins in plants
Mehak Taneja
Santosh Kumar Upadhyay
11.1 Introduction
171(2)
11.2 Structure of plant annexins and membrane association
173(3)
11.3 Annexins in plant kingdom
176(1)
11.4 Roles of plant annexins
177(9)
11.4.1 Nucleotide phosphodiesterase activity
177(1)
11.4.2 Annexins as F-actin-binding proteins
178(1)
11.4.3 Involvement of annexins in secretion in plant cells
179(1)
11.4.4 Regulation of glucan synthesis
180(1)
11.4.5 Peroxidase activity
180(1)
11.4.6 Plant annexins in development, stress, and stimuli responsiveness
181(1)
11.4.7 Membrane-specific functions of plant annexins
182(3)
11.4.8 Role of plant annexins in channel-mediated transport
185(1)
11.5 Conclusions and future perspective
186(7)
Acknowledgments
186(1)
References
186(7)
12 Role of cyclic nucleotide--gated channels in stress and development in plants
Saroj K. Jha
Cirdhar K. Pandey
12.1 Introduction
193(1)
12.2 Cyclic nucleotide--gated ion channel structure
194(1)
12.3 Subcellular localization
195(1)
12.4 Ion selectivity
196(3)
12.5 Cyclic nucleotide--gated ion channel regulation
199(1)
12.6 Role in growth and development
200(2)
12.7 Role in abiotic stress
202(3)
12.7.1 Salt tolerance
202(1)
12.7.2 Drought tolerance
203(1)
12.7.3 Tolerance to temperature extremes
204(1)
12.7.4 Heavy metal tolerance
204(1)
12.8 Role in biotic stress
205(1)
12.9 Conclusions and future outlook
206(9)
Acknowledgments
207(1)
References
207(8)
13 Functional analysis of glutamate receptor-like channels in plants Abbreviation
215(16)
Asif M. Iqbal Qureshi
A. Dar Zahoor
Mehraj uddin Soft
Aijaz A. Lone
I. Abidi
Syed S. Mahdi
A. Cowhar
Mudasir H. Khan
M. Altaf Wani
Aazima Hyder
Tehmeena Bano
13.1 Introduction
215(2)
13.2 Origin of plant glutamate regulators and their relation to CLRs in other kingdoms
217(1)
13.3 Structure of glutamate receptor
218(1)
13.4 Subcellular localization of plant glutamate regulators
218(2)
13.5 Functional role of CLRs in plants
220(4)
13.5.1 Role of GLRs in carbon--nitrogen balance
220(1)
13.5.2 Root tip
220(1)
13.5.3 Lateral root formation
221(1)
13.5.4 Membrane depolarization induced by amino acids
221(1)
13.5.5 Pollen tube elongation
222(1)
13.5.6 Role of CLRs in seed germination in plants
223(1)
13.5.7 Role of CLRs to plant pathogens
223(1)
13.5.8 Role of GLRs to environmental stresses
224(1)
13.6 Conclusion and future perspective
224(7)
References
225(6)
14 Calmodulin and calmodulin-like Ca2+ binding proteins as molecular players of abiotic stress response in plants
Meenakshi Raina
Arun Vincent Kisku
Shikha loon
Sanjeev Kumar
Deepak Kumar
14.1 Introduction
231(2)
14.2 Intracellular calcium as a potent messenger molecule
233(1)
14.3 Calcium dynamics under various abiotic stress responses in plants
234(1)
14.4 Calmodulin and calmodulin-like proteins
235(2)
14.4.1 Structure of calmodulin
236(1)
14.5 Role of CaM and CMLs in response to multiple abiotic stress
237(2)
14.5.1 Implication under heat and cold stress
237(1)
14.5.2 Implication under heavy metal stress
238(1)
14.5.3 Implication under salt and drought stress
238(1)
14.6 Overexpression of CaM and CMLs for abiotic stress alleviation in plants using transgenomics approach
239(3)
14.7 Conclusions and future prospective
242(7)
Acknowledgment
243(1)
References
243(6)
15 Calmodulin-binding transcription activator (CAMTA)/ factors in plants
Fushuang Dong
Fan Yang
Yongwei Liu
Weizhe Jia
Xiaoye He
Jianfang Chai
He Zhao
Mengyu Lv
Liqun Zhao
Shuo Zhou
15.1 Introduction
249(1)
15.2 Structural characteristics and identification of CAMTAs in plants
250(2)
15.3 Functions and molecular mechanisms
252(7)
15.3.1 Plant growth and development
252(1)
15.3.2 Responses to biotic stresses
253(2)
15.3.3 Regulation of plant general stress response
255(1)
15.3.4 Regulation of cold acclimation and freezing tolerance
255(1)
15.3.5 Regulation of salt resistance
256(1)
15.3.6 Regulation of drought tolerance
257(1)
15.3.7 Regulation of metal stress tolerance
258(1)
15.4 Perspectives
259(8)
Acknowledgments
261(1)
References
261(6)
16 Mechanosensitive ion channels in plants
Amandeep Kaur
Madhu
Santosh Kumar Upadhyay
16.1 Introduction
267(4)
16.2 Roles of MS channels in plants
271(5)
16.2.1 Roles of MSL channels
271(2)
16.2.2 Roles of MCA channels
273(1)
16.2.3 Roles of TPK channels
274(1)
16.2.4 Roles of piezo channels
275(1)
16.2.5 Roles of OSCA channels
276(1)
16.3 Conclusions
276(5)
Acknowledgments
276(1)
References
276(5)
17 CBL and CIPK interaction in plants for calcium-mediated stress response
Yang Zhou
17.1 Introduction
281(1)
17.2 Structure and characteristics of CBL and CIPK proteins
281(3)
17.2.1 CBL proteins
281(2)
17.2.2 CIPK proteins
283(1)
17.3 Interaction between CBL and CIPK proteins
284(1)
17.4 CBL-CIPK pathway response to abiotic and biotic stresses
285(3)
17.4.1 The function of CBLs and CIPKs in salt stress responses
285(1)
17.4.2 The role of CBLs and CIPKs in drought and cold stress
286(1)
17.4.3 The function of CBLs and CIPKs in nutrition stress
287(1)
17.4.4 Additional roles of CBLs and CIPKs in other abiotic stresses
288(9)
17.4.5 The function of CBLs and CIPKs in biotic stress
289(1)
17.5 Conclusions and perspectives
289(8)
Acknowledgments
292(1)
References
292(5)
18 Calcium signaling network in abiotic stress tolerance in plants
Divya Sharma
Anil Kumar
18.1 Introduction
297(1)
18.2 Calcium signals
298(1)
18.3 Calcium signatures
299(1)
18.4 Calcium memory response
300(1)
18.5 Plant calcium signals decoding elements
300(2)
18.5.1 Ca2+permeable ion channels
301(1)
18.5.2 Ca2+/H+antiporters
301(1)
18.5.3 Ca2+ATPases
302(1)
18.6 Calcium sensing and signaling
302(4)
18.6.1 Sensor relays
303(2)
18.6.2 Sensor protein kinases
305(1)
18.7 Role of calcium signals decoding elements in plant drought tolerance
306(1)
18.8 Role of calcium signals decoding elements in plant cold tolerance
307(1)
18.9 Role of calcium signals decoding elements in plant salt tolerance
308(1)
18.10 Conclusion
308(7)
References
309(6)
19 Role of calcium nutrition on product quality and disorder susceptibility of horticultural crops: processes and strategies for biofortification
Mating Wang
Marta W. Vasconcelos
Susana M.P. Carvalho
19.1 Introduction
315(3)
19.2 Mechanisms involved in Ca uptake, transport, and accumulation
318(5)
19.2.1 Ca uptake and transport
319(1)
19.2.2 Ca accumulation and remobilization
320(1)
19.2.3 Molecular regulation of Ca2+ partitioning and distribution
321(2)
19.3 Implications of Ca nutrition and fertilization regimes on product quality and disorder susceptibility
323(2)
19.4 Ca availability as a function of the environmental conditions and soil properties
325(2)
19.5 Strategies for Ca biofortification in horticultural crops
327(2)
19.6 Conclusions and future prospects
329(8)
Acknowledgments
330(1)
References
330(7)
20 Calcium transport systems in chloroplasts and mitochondria of plant cells
Hironari Nomura
Takashi Shiina
20.1 Introduction
337(3)
20.2 Role of calcium in plant organelles
340(10)
20.2.1 Endosymbiotic organelles: the chloroplast and mitochondrion
340(3)
20.2.2 Chloroplast Ca2+ signal
343(1)
20.2.3 Chloroplast proteins involved in Ca2+ signaling
344(5)
20.2.4 Mitochondrial Ca2+ signal
349(1)
20.3 Channels and transporters in Ca2+ transport in chloroplast
350(6)
20.3.1 Ca2+ channels
350(4)
20.3.2 Ca2+ pumps
354(1)
20.3.3 Ca2+ exchangers
355(1)
20.4 Channels and transporters in Ca2+ transport in mitochondria
356(5)
20.4.1 Ca2+ channels
356(4)
20.4.2 Ca2+ exchangers
360(1)
20.5 Conclusion, challenges, and future remarks
361(12)
Acknowledgments
361(1)
References
362(11)
21 Calcium uptake and translocation in plants
Rajesh Kumar Pathak
Dev Bukhsh Singh
Himanshu Sharma
Dinesh Pandey
Seema Dwivedi
21.1 Introduction
373(1)
21.2 Molecular mechanism of calcium uptake and translocation in plants
374(4)
21.2.1 Uptake of calcium and their translocation in root
376(1)
21.2.2 Uptake of calcium and their translocation in xylem
377(1)
21.2.3 Uptake of calcium and their translocation in phloem
378(1)
21.2.4 Movements of calcium in different parts of the plant system
378(1)
21.3 Systems biology for understanding the role of calcium in plants
378(3)
21.3.1 Growth and development
380(1)
21.3.2 Nutrition and nutrient signaling
380(1)
21.3.3 Immunity
380(1)
21.4 Role of calcium sensors, transporters, and exchangers in signaling pathways regulating plant functions
381(1)
21.5 Challenges and opportunities in calcium research for improving uptake and their translocation efficiency in plants through omics
382(1)
21.6 Future perspective and conclusion
383(4)
References
383(4)
22 Interaction between Ca2+ and ROS signaling in plants
Vishal Chand
Varsha Gupta
22.1 Introduction
387(2)
22.2 Calcium signals generation: an insight
389(2)
22.2.1 Glutamate-like receptor homologs (GLRs)
390(1)
22.2.2 Cyclic nucleotide ion channels (CNGCs)
390(1)
22.3 Transmission of Ca2+ signals
391(3)
22.3.1 Role of CDPKs in Ca2+ signal transmission
391(1)
22.3.2 Role of CBL proteins in Ca2+ signal transmission
392(2)
22.4 Target regulation mechanism
394(1)
22.5 Direct interaction of calcium and ROS signaling
394(17)
22.5.1 Role of ROS in long-distance signaling
397(1)
22.5.2 ROS in growth and development of root hair and pollen tube
398(1)
22.5.3 ROS role in stomatal closure signaling event
399(1)
22.5.4 Annexins an ion channel activated by ROS
400(1)
References
401(10)
23 Methods for detection and measurement of calcium in plants
Sameer Dixit
Akanchha Shukla
Deependra Kumar Singh
23.1 Introduction
411(1)
23.2 Dye loading methods
412(1)
23.3 Different dyes/indicator for the detection of calcium ion
413(5)
23.3.1 Chemical dyes
413(1)
23.3.2 Fluorescent indicators for Ca2+measurements
414(4)
23.3.3 Fluorescent indicator conjugates for Ca2+ measurements
418(1)
23.4 Protein-based calcium indicators: genetically encoded calcium indicators (CECIs)
418(1)
23.5 Nanoparticle-based detection of calcium ion
419(1)
23.6 Other tools and method for calcium detection
419(2)
23.6.1 Inductively coupled plasma--mass spectrometry (ICP-MS)
420(1)
23.6.2 Magnetic resonance imaging (MRI)
420(1)
23.6.3 Multicell bolus loading technique (MCBL)
420(1)
23.7 Conclusion
421(6)
Acknowledgments
421(1)
References
422(5)
24 Applications of calcium transport elements in plant improvement: a future perspective
Amandeep Kaur
Madhu
Mehak Taneja
Santosh Kumar Upadhyay
24.1 Introduction
427(2)
24.2 Applications of Ca2+ transport elements
429(18)
24.2.1 Ca2+ transport elements in abiotic stress tolerance
429(5)
24.2.2 Ca2+ transport elements in biotic stress tolerance
434(2)
24.2.3 Ca2+ transport elements in growth and development
436(2)
24.2.4 Conclusions and future perspectives
438(1)
Acknowledgments
439(1)
References
439(8)
Index 447
Dr. Upadhyay is currently working as an Assistant Professor at the Department of Botany, Panjab University, Chandigarh, India. He has been working in the field of Plant Biotechnology for more than 16 years. He is currently working in functional genomics. His research group at PU has characterized numerous important defence-related protein families such as receptor-like kinases, antioxidant enzymes, calcium transporters, chitinases, lectins, etc. They are also characterizing long non-coding RNAs related to the abiotic and biotic stress response. He has authored more than 130 publications including research papers in leading journals of international repute, national and international patents, book chapters and books. He has been awarded the NAAS Young scientist award (2017-18) and NAAS-Associate (2018) from the National Academy of Agricultural Sciences, India, INSA Medal for Young Scientist (2013) from the Indian National Science Academy, India, NASI- Young Scientist Platinum Jubilee Award (2012) from the National Academy of Sciences, India, and Altech Young Scientist Award (2011).