Atjaunināt sīkdatņu piekrišanu

Calculus Fourth Edition [Hardback]

3.47/5 (15 ratings by Goodreads)
  • Formāts: Hardback, 1216 pages, height x width x depth: 283x224x44 mm, weight: 2445 g
  • Izdošanas datums: 07-Feb-2019
  • Izdevniecība: W.H.Freeman & Co Ltd
  • ISBN-10: 1319050735
  • ISBN-13: 9781319050733
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 97,62 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 1216 pages, height x width x depth: 283x224x44 mm, weight: 2445 g
  • Izdošanas datums: 07-Feb-2019
  • Izdevniecība: W.H.Freeman & Co Ltd
  • ISBN-10: 1319050735
  • ISBN-13: 9781319050733
Citas grāmatas par šo tēmu:

Establish strong computational skills while continually reinforcing the relevance of calculus in your studies and daily life as Calculus establishes balance between concepts.

Chapter 1 Precalculus Review
1(42)
1.1 Real Numbers, Functions, and Graphs
1(13)
1.2 Linear and Quadratic Functions
14(8)
1.3 The Basic Classes of Functions
22(5)
1.4 Trigonometric Functions
27(8)
1.5 Technology: Calculators and Computers
35(8)
Chapter Review Exercises
40(3)
Chapter 2 Limits
43(60)
2.1 The Limit Idea: Instantaneous Velocity and Tangent Lines
43(6)
2.2 Investigating Limits
49(9)
2.3 Basic Limit Laws
58(3)
2.4 Limits and Continuity
61(11)
2.5 Indeterminate Forms
72(5)
2.6 The Squeeze Theorem and Trigonometric Limits
77(5)
2.7 Limits at Infinity
82(6)
2.8 The Intermediate Value Theorem
88(4)
2.9 The Formal Definition of a Limit
92(11)
Chapter Review Exercises
99(4)
Chapter 3 Differentiation
103(74)
3.1 Definition of the Derivative
103(9)
3.2 The Derivative as a Function
112(13)
3.3 Product and Quotient Rules
125(6)
3.4 Rates of Change
131(10)
3.5 Higher Derivatives
141(5)
3.6 Trigonometric Functions
146(5)
3.7 The Chain Rule
151(7)
3.8 Implicit Differentiation
158(7)
3.9 Related Rates
165(12)
Chapter Review Exercises
174(3)
Chapter 4 Applications of the Derivative
177(62)
4.1 Linear Approximation and Applications
177(9)
4.2 Extreme Values
186(10)
4.3 The Mean Value Theorem and Monotonicity
196(8)
4.4 The Second Derivative and Concavity
204(6)
4.5 Analyzing and Sketching Graphs of Functions
210(8)
4.6 Applied Optimization
218(13)
4.7 Newton's Method
231(8)
Chapter Review Exercises
236(3)
Chapter 5 Integration
239(64)
5.1 Approximating and Computing Area
239(12)
5.2 The Definite Integral
251(12)
5.3 The Indefinite Integral
263(8)
5.4 The Fundamental Theorem of Calculus, Part I
271(6)
5.5 The Fundamental Theorem of Calculus, Part II
277(8)
5.6 Net Change as the Integral of a Rate of Change
285(6)
5.7 The Substitution Method
291(12)
Chapter Review Exercises
298(5)
Chapter 6 Applications of the Integral
303(44)
6.1 Area Between Two Curves
303(8)
6.2 Setting Up Integrals: Volume, Density, Average Value
311(11)
6.3 Volumes of Revolution: Disks and Washers
322(9)
6.4 Volumes of Revolution: Cylindrical Shells
331(7)
6.5 Work and Energy
338(9)
Chapter Review Exercises
344(3)
Chapter 7 Exponential and Logarithmic Functions
347(60)
7.1 The Derivative of f(x) = b* and the Number e
347(7)
7.2 Inverse Functions
354(8)
7.3 Logarithmic Functions and Their Derivatives
362(10)
7.4 Applications of Exponential and Logarithmic Functions
372(8)
7.5 L'Hopital's Rule
380(8)
7.6 Inverse Trigonometric Functions
388(8)
7.7 Hyperbolic Functions
396(11)
Chapter Review Exercises
403(4)
Chapter 8 Techniques of Integration
407(66)
8.1 Integration by Parts
407(6)
8.2 Trigonometric Integrals
413(8)
8.3 Trigonometric Substitution
421(6)
8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions
427(5)
8.5 The Method of Partial Fractions
432(9)
8.6 Strategies for Integration
441(7)
8.7 Improper Integrals
448(11)
8.8 Numerical Integration
459(14)
Chapter Review Exercises
469(4)
Chapter 9 Further Applications of the Integral
473(32)
9.1 Probability and Integration
473(6)
9.2 Arc Length and Surface Area
479(7)
9.3 Fluid Pressure and Force
486(6)
9.4 Center of Mass
492(13)
Chapter Review Exercises
502(3)
Chapter 10 Introduction to Differential Equations
505(38)
10.1 Solving Differential Equations
505(10)
10.2 Models Involving y' = k(y -- b)
515(7)
10.3 Graphical and Numerical Methods
522(7)
10.4 The Logistic Equation
529(5)
10.5 First-Order Linear Equations
534(9)
Chapter Review Exercises
540(3)
Chapter 11 Infinite Series
543(82)
11.1 Sequences
543(11)
11.2 Summing an Infinite Series
554(12)
11.3 Convergence of Series with Positive Terms
566(9)
11.4 Absolute and Conditional Convergence
575(6)
11.5 The Ratio and Root Tests and Strategies for Choosing Tests
581(5)
11.6 Power Series
586(12)
11.7 Taylor Polynomials
598(11)
11.8 Taylor Series
609(16)
Chapter Review Exercises
621(4)
Chapter 12 Parametric Equations, Polar Coordinates, and Conic Sections
625(50)
12.1 Parametric Equations
625(12)
12.2 Arc Length and Speed
637(6)
12.3 Polar Coordinates
643(9)
12.4 Area and Arc Length in Polar Coordinates
652(5)
12.5 Conic Sections
657(18)
Chapter Review Exercises
671(4)
Chapter 13 Vector Geometry
675(68)
13.1 Vectors in the Plane
675(11)
13.2 Three-Dimensional Space: Surfaces, Vectors, and Curves
686(10)
13.3 Dot Product and the Angle Between Two Vectors
696(10)
13.4 The Cross Product
706(12)
13.5 Planes in 3-Space
718(7)
13.6 A Survey of Quadric Surfaces
725(8)
13.7 Cylindrical and Spherical Coordinates
733(10)
Chapter Review Exercises
740(3)
Chapter 14 Calculus of Vector-Valued Functions
743(52)
14.1 Vector-Valued Functions
743(7)
14.2 Calculus of Vector-Valued Functions
750(10)
14.3 Arc Length and Speed
760(6)
14.4 Curvature
766(12)
14.5 Motion in 3-Space
778(8)
14.6 Planetary Motion According to Kepler and Newton
786(9)
Chapter Review Exercises
793(2)
Chapter 15 Differentiation in Several Variables
795(90)
15.1 Functions of Two or More Variables
795(11)
15.2 Limits and Continuity in Several Variables
806(8)
15.3 Partial Derivatives
814(10)
15.4 Differentiability, Tangent Planes, and Linear Approximation
824(9)
15.5 The Gradient and Directional Derivatives
833(13)
15.6 Multivariable Calculus Chain Rules
846(10)
15.7 Optimization in Several Variables
856(15)
15.8 Lagrange Multipliers: Optimizing with a Constraint
871(14)
Chapter Review Exercises
881(4)
Chapter 16 Multiple Integration
885(78)
16.1 Integration in Two Variables
885(12)
16.2 Double Integrals over More General Regions
897(14)
16.3 Triple Integrals
911(12)
16.4 Integration in Polar, Cylindrical, and Spherical Coordinates
923(10)
16.5 Applications of Multiple Integrals
933(12)
16.6 Change of Variables
945(18)
Chapter Review Exercises
959(4)
Chapter 17 Line and Surface Integrals
963(66)
17.1 Vector Fields
963(10)
17.2 Line Integrals
973(16)
17.3 Conservative Vector Fields
989(12)
17.4 Parametrized Surfaces and Surface Integrals
1001(14)
17.5 Surface Integrals of Vector Fields
1015(14)
Chapter Review Exercises
1026(3)
Chapter 18 Fundamental Theorems of Vector Analysis
1029(1)
18.1 Green's Theorem
1029(14)
18.2 Stokes' Theorem
1043(12)
18.3 Divergence Theorem
1055(12)
Chapter Review Exercises
1067
Appendices
1(1)
A The Language of Mathematics
1(6)
B Properties of Real Numbers
7(5)
C Induction and the Binomial Theorem
12(4)
D Additional Proofs
16
Answers to Odd-Numbered Exercises 1(1)
References 1(1)
Index 1