Atjaunināt sīkdatņu piekrišanu

E-grāmata: Cancer Drug Design and Discovery

Edited by (Emeritus Professor of Chemical Biology, The School of Pharmacy, University College London, UK)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 28-Apr-2011
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780080554952
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 79,69 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 28-Apr-2011
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780080554952
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The ultimate source of information on the design of new anticancer agents, emphasising small molecules, this newest work covers recent notable successes resulting from the human genome and cancer genomics projects. These advances have provided information on targets involved in specific cancers that are leading to effective medicines for at least some of the common solid tumours. Unique sections explain the basic underlying principles of cancer drug development and provide a practical introduction to modern methods of drug design. Appealing to a broad audience, this is an excellent reference for translational researchers interested in cancer biology and medicine as well as students in pharmacy, pharmacology, or medicinal and biological chemistry, and clinicians taking oncology options.

* Covers both currently available drugs as well as those under development
* Provides a clinical perspective on trials of new anticancer agents
* Presents drug discovery examples through the use of case histories

The ultimate source of information on the design of new anticancer agents, emphasizing small molecules, this newest work covers recent notable successes resulting from the human genome and cancer genomics projects. These advances have provided information on targets involved in specific cancers that are leading to effective medicines for at least some of the common solid tumors. Unique sections explain the basic underlying principles of cancer drug development and provide a practical introduction to modern methods of drug design. Appealing to a broad audience, this is an excellent reference for translational researchers interested in cancer biology and medicine as well as students in pharmacy, pharmacology, or medicinal and biological chemistry and clinicians taking oncology options.

* Covers both currently available drugs as well as those under development
* Provides a clinical perspective on trials of new anticancer agents
* Presents drug discovery examples through the use of case histories
About the editor x
Contributors xi
Introduction xiv
PART I: BASIC PRINCIPLES
1(88)
Modern cancer drug discovery: integrating targets, technologies and treatments
3(36)
Paul Workman
Ian Collins
Introduction: changing times
3(1)
Successes and limitations
4(6)
Integrated small-molecule drug discovery and development
10(1)
New molecular targets: the ``druggable'' cancer genome
10(6)
From drug target to development candidate
16(8)
Examples of case histories for molecularly targeted cancer therapeutics
24(2)
Biomarkers, the pharmacological audit trail and clinical development
26(3)
Conclusions and outlook: towards individualized molecular cancer medicine
29(10)
References
33(6)
Preclinical pharmacology and in vivo models
39(14)
Lloyd Kelland
Introduction
39(1)
Contemporary preclinical cancer drug discovery
40(1)
In vitro pharmacological evaluation
41(1)
Information gained from in vitro cell lines
42(1)
In vivo pharmacokinetics (PK) and pharmacodynamics (PD): continuing the pharmacological audit trail
43(2)
In vivo anti-tumor models: choice and predictiveness?
45(5)
Concluding remarks
50(3)
References
51(2)
Clinical trial designs for more rapid proof-of-principle and approval
53(36)
Mitesh J. Borad
Daniel D. Von Hoff
Introduction
53(1)
NDA plan at the time of IND
54(1)
Phase I trial design innovations
54(5)
Concept of a continuous Phase I
59(1)
Phase II trial design innovations
60(7)
Phase III trial design innovations (enrichment designs)
67(5)
Other approaches to enrich trial populations
72(1)
Innovations in design and selection of endpoints
73(4)
Regulatory strategies
77(1)
Other approaches to accelerate drug development
78(1)
New perspectives
79(2)
Summary
81(8)
References
83(6)
PART II: METHODOLOGY
89(66)
Structural biology and anticancer drug design
91(16)
Dominic Tisi
Gianni Chessari
Andrew J. Woodhead
Harren Jhoti
Introduction
91(2)
High-throughput X-ray crystallography
93(2)
Structural biology and structure-based drug design
95(2)
Fragment screening using X-ray crystallography
97(1)
Case history: cyclin-dependent kinase inhibitors, from fragment hit to clinical candidate
98(4)
Compound profiling
102(2)
Conclusions
104(3)
References
105(2)
Natural product chemistry and anticancer drug discovery
107(24)
Donna M. Huryn
Peter Wipf
Introduction
107(1)
Exemestane (aromasin)
108(1)
Fulvestrant/faslodex
109(1)
Flavonoids
110(1)
Bexarotene (targretin)
111(1)
Epothilones
112(2)
Maytansine
114(1)
Geldanamycin
115(1)
UCN-01
116(1)
Camptothecin
117(1)
Prodigiosin
118(1)
Azacitidine
119(2)
FK-288
121(1)
Hemiasterlin
122(2)
Calicheamicin
124(2)
Conclusion
126(5)
References
126(5)
Pharmacokinetics and ADME optimization in drug discovery
131(24)
Chad L. Stoner
Matthew D. Troutman
Caroline E. Laverty
Introduction
131(2)
Absorption
133(7)
Distribution
140(2)
Metabolism
142(3)
Elimination
145(1)
Biochemical barriers to drug therapy: efflux transporters
145(2)
Induction
147(1)
Conclusions
148(7)
References
149(6)
PART III: DRUGS IN THE CLINIC
155(72)
Temozolomide: from cytotoxic to molecularly-targeted agent
157(16)
Malcolm F. G. Stevens
Introduction
157(1)
Towards imidazotetrazines and azolastone (mitozolomide)
158(2)
From mitozolomide to temozolomide
160(1)
Synthesis and chemistry of temozolomide
161(2)
Early clinical trials on temozolomide
163(1)
Mode of action of temozolomide
163(4)
Epigenetic silencing of the MGMT gene
167(1)
New analogs of temozolomide
167(1)
Summary: temozolomide, targets, molecular targets and validated targets
168(5)
References
169(4)
Camptothecins for drug design, cancer cell death and gene targeting
173(25)
Jerome Kluza
Paola B. Arimondo
Marie-Helene David-Cordonnier
Christian Bailly
Introduction
173(1)
Camptothecins: molecular clamps for the topoisomerase I-DNA complex
174(3)
Design of CPT derivatives: an endless series
177(5)
From trapped-topoisomerase I to DNA double strand breaks
182(1)
DNA repair or cell death
183(3)
Sequence-specific targeting of topoisomerase-mediated DNA cleavage
186(2)
Structure-activity relationships
188(1)
Applications
189(1)
Conclusion
190(8)
References
190(8)
Targeting thymidylate synthase by antifolate drugs for the treatment of cancer
198(29)
Ann L. Jackman
Martin Forster
Matthew Ng
Introduction
198(1)
Thymidylate synthase as an anti-cancer drug target
199(1)
CB3717
200(2)
Raltitrexed
202(5)
Pemetrexed
207(3)
Plevitrexed
210(4)
BGC 945
214(4)
Conclusions
218(9)
References
219(8)
PART IV: NEW AGENTS
227(176)
Targeting inactive kinases: structure as a foundation for cancer drug discovery
229(24)
David J. Hosfield
Clifford D. Mol
Introduction
229(1)
c-Kit, a Type III receptor protein tyrosine kinase
230(9)
c-Abl, a cellular protein tyrosine kinase
239(5)
b-Raf-Bay43-9006 co-crystal structure
244(1)
P38-BIRB-796 co-crystal structure
245(1)
VEGF-R2-4-amino-furopyrimidine co-crystal structure
246(3)
Conclusions and perspectives
249(4)
References
250(3)
Cell cycle inhibitors in cancer: current status and future directions
253(31)
Peter M. Fischer
Introduction
253(2)
The G1-S nexus
255(5)
The DNA replication and damage checkpoints
260(6)
Mitosis
266(12)
Conclusion
278(6)
References
279(5)
Inhibition of DNA repair as a therapeutic target
284(21)
Nicola J. Curtin
Thomas Helleday
Introduction
284(2)
O6-Alkylguanine DNA alkyltransferase (AGT)
286(3)
Poly(ADP-ribose) polymerase (PARP)
289(6)
DNA-dependent protein kinase (DNA-PK)
295(2)
Exploiting synthetic lethality for cancer treatments
297(3)
Summary and conclusions
300(5)
References
300(5)
HSP90 inhibitors: targeting the cancer chaperone for combinatorial blockade of oncogenic pathways
305(31)
Swee Y Sharp
Keith Jones
Paul Workman
Introduction
305(5)
Classes of HSP90 inhibitors
310(16)
Summary and future perspectives
326(10)
References
329(7)
Heat shock protein-90 directed therapeutics and target validation
336(15)
Edward A. Sausville
Introduction
336(1)
Overview of heat shock protein function
337(2)
Benzoquinoid ansamycin HSP90 antagonists
339(4)
Radicicol (monorden)
343(1)
Radester, radamide, and radanamycin
344(1)
Purine scaffold inhibitors: PU3 and analogs
344(1)
Pyrazole resorcinols
344(1)
Shepherdin-related structures
345(1)
Novobiocin and analogs
346(1)
Conclusion and perspectives
347(4)
References
347(4)
Inhibitors of tumor angiogenesis
351(31)
Adrian L Harris
Daniele G. Generali
Introduction: overview of tumor angiogenesis
351(2)
Tumor angiogenesis: assessment approaches
353(3)
Tumor angiogenesis-related pathways and anti-angiogenic drugs
356(17)
Conclusions and future directions
373(9)
References
374(8)
The biology and oncology of RAF-ERK signaling
382(21)
Victoria Emuss
Richard Marais
Introduction
382(1)
MAP kinase pathways
383(1)
Outcomes of ERK signaling
384(1)
RAF proteins
385(5)
ERK signaling and cancer
390(2)
Therapeutic opportunities
392(4)
Conclusions
396(7)
References
397(6)
PART V: THE REALITY OF CANCER DRUGS IN THE CLINIC
403(33)
Cancer drug resistance
405(19)
V. Karavasilis
A. Reid
R. Sinha
J.S. de Bono
Introduction
405(1)
Drug resistance in conventional chemotherapy
406(4)
Targeted therapeutics
410(10)
Conclusions: overcoming resistance to TKI inhibitors
420(4)
References
422(2)
Failure modes in anticancer drug discovery and development
424(12)
Homer L. Pearce
Kerry L. Blanchard
Christopher A. Slapak
Introduction
424(1)
Failure modes in the discovery process
425(5)
Failure modes in clinical development
430(3)
Conclusions
433(3)
References
434(2)
Glossary 436(4)
Index 440


Stephen Neidle is an Emeritus Professor of Chemical Biology at University College London, where he has also been the Director of Research in the School of Pharmacy. He has published over 500 primary papers and reviews and is a principal inventor on 14 patent filings. He has also written and edited several books on nucleic acids and anti-cancer drugs.