Atjaunināt sīkdatņu piekrišanu

E-grāmata: Canonical Ramsey Theory on Polish Spaces

(Russian Academy of Sciences, Moscow), (Polish Academy of Sciences), (University of Florida)
  • Formāts: PDF+DRM
  • Sērija : Cambridge Tracts in Mathematics
  • Izdošanas datums: 12-Sep-2013
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781107439535
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 132,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Cambridge Tracts in Mathematics
  • Izdošanas datums: 12-Sep-2013
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781107439535
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book lays the foundations for an exciting new area of descriptive set theory. It develops a robust connection between two active areas of research: forcing and analytic equivalence relations. Ideal for graduate students and researchers in set theory, the book provides an ideal springboard for further research.

This book lays the foundations for an exciting new area of research in descriptive set theory. It develops a robust connection between two active topics: forcing and analytic equivalence relations. This in turn allows the authors to develop a generalization of classical Ramsey theory. Given an analytic equivalence relation on a Polish space, can one find a large subset of the space on which it has a simple form? The book provides many positive and negative general answers to this question. The proofs feature proper forcing and Gandy–Harrington forcing, as well as partition arguments. The results include strong canonization theorems for many classes of equivalence relations and sigma-ideals, as well as ergodicity results in cases where canonization theorems are impossible to achieve. Ideal for graduate students and researchers in set theory, the book provides a useful springboard for further research.

Papildus informācija

Lays the foundations for a new area of descriptive set theory: the connection between forcing and analytic equivalence relations.
Preface vii
1 Introduction
1(13)
1.1 Motivation
1(2)
1.2 Basic concepts
3(4)
1.3 Outline of results
7(3)
1.4 Navigation
10(2)
1.5 Notation
12(2)
2 Background facts
14(31)
2.1 Descriptive set theory
14(2)
2.2 Invariant descriptive set theory
16(2)
2.3 Forcing
18(5)
2.4 Absoluteness and interpretations
23(8)
2.5 Generic ultrapowers
31(2)
2.6 Idealized forcing
33(9)
2.7 Concentration of measure
42(1)
2.8 Katetov order and coding functions
42(3)
3 Analytic equivalence relations and models of set theory
45(17)
3.1 The model V[ x]E
45(9)
3.2 The model V [ [ x]]E
54(2)
3.3 The poset P1E
56(6)
4 Classes of equivalence relations
62(18)
4.1 Smooth equivalence relations
62(1)
4.2 Countable equivalence relations
63(5)
4.3 Equivalence relations classifiable by countable structures
68(8)
4.4 Hypersmooth equivalence relations
76(2)
4.5 Analytic vs. Borel equivalence relations
78(2)
5 Games and the Silver property
80(20)
5.1 Integer games connected with σ-ideals
80(6)
5.2 Determinacy conclusions
86(4)
5.3 The selection property
90(7)
5.4 A Silver-type dichotomy for a σ-ideal
97(3)
6 The game ideals
100(47)
6.1 σ-ideals σ-generated by closed sets
100(20)
6.2 Porosity ideals
120(14)
6.3 Laver forcing
134(2)
6.4 Fat tree forcings
136(3)
6.5 The Lebesgue null ideal
139(8)
7 Benchmark equivalence relations
147(40)
7.1 The E0 ideal
147(3)
7.2 The E1 ideal
150(22)
7.3 The E2 ideal
172(15)
8 Ramsey-type ideals
187(31)
8.1 Halpern-Lauchli cubes
187(3)
8.2 Silver cubes
190(6)
8.3 Ellentuck cubes
196(6)
8.4 Milliken cubes
202(5)
8.5 Matet cubes
207(11)
9 Product-type ideals
218(26)
9.1 Finite products and the covering property
218(4)
9.2 Finite products of the E0 ideal
222(10)
9.3 Infinite products of perfect sets
232(8)
9.4 Products of superperfect sets
240(4)
10 The countable support iteration ideals
244(20)
10.1 Iteration preliminaries
245(2)
10.2 The weak Sacks property
247(1)
10.3 A game reformulation
248(7)
10.4 The canonization result
255(5)
10.5 The iteration of Sacks forcing
260(1)
10.6 Anticanonization results
261(3)
References 264(4)
Index 268
Vladimir Kanovei is a mathematician working in descriptive set theory and non-standard analysis. He is Leading Researcher in the Institute for Information Transmission Problems (IITP), Moscow, and Professor at Moscow State University of Railway Engineering (MIIT). Marcin Sabok works in mathematical logic and, in particular, in descriptive set theory. He received his PhD from Wroclaw University, Poland in 2009 and has held postdoctoral positions at the Kurt Gödel Research Center for Mathematical Logic, Vienna and at the University of Illinois, Urbana-Champaign. Sabok is currently Assistant Professor in the Institute of Mathematics at the Polish Academy of Sciences. Jindich Zapletal is a mathematician working in set theory. He developed a robust connection between descriptive set theory, abstract analysis and Shelah's method of proper forcing. His main research contributions are collected in the book Forcing Idealized (Cambridge University Press, 2008). Zapletal is Professor of Mathematics at the University of Florida.