Atjaunināt sīkdatņu piekrišanu

E-grāmata: Carbon Nanomaterials for Advanced Energy Systems: Advances in Materials Synthesis and Device Applications

Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Izdošanas datums: 28-Sep-2015
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118981023
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 155,79 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 28-Sep-2015
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118981023
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

With the proliferation of electronic devices, the world will need to double its energy supply by 2050. This book addresses this challenge and discusses synthesis and characterization of carbon nanomaterials for energy conversion and storage.









Addresses one of the leading challenges facing society today as we steer away from dwindling supplies of fossil fuels and a rising need for electric power due to the proliferation of electronic products Promotes the use of carbon nanomaterials for energy applications Systematic coverage: synthesis, characterization, and a wide array of carbon nanomaterials are described Detailed descriptions of solar cells, electrodes, thermoelectrics, supercapacitors, and lithium-ion-based storage Discusses special architecture required for energy storage including hydrogen, methane, etc.
List of Contributors xiii
Preface xvii
Part I Synthesis And Characterization Of Carbon Nanomaterials 1(162)
1 Fullerenes, Higher Fullerenes, and Their Hytrids: Synthesis, Characterization, and Environmental Considerations
3(44)
1.1 Introduction
3(2)
1.2 Fullerene, Higher Fullerenes, and Nanohybrids: Structures and Historical Perspective
5(2)
1.2.1 C60 Fullerene
5(1)
1.2.2 Higher Fullerenes
6(1)
1.2.3 Fullerene-Based Nanohybrids
7(1)
1.3 Synthesis and Characterization
7(10)
1.3.1 Fullerenes and Higher Fullerenes
7(5)
1.3.1.1 Carbon Soot Synthesis
7(3)
1.3.1.2 Extraction, Separation, and Purification
10(1)
1.3.1.3 Chemical Synthesis Processes
11(1)
1.3.1.4 Fullerene-Based Nanohybrids
12(1)
1.3.2 Characterization
12(5)
1.3.2.1 Mass Spectroscopy
12(1)
1.3.2.2 NMR
13(1)
1.3.2.3 Optical Spectroscopy
13(1)
1.3.2.4 HPLC
14(1)
1.3.2.5 Electron Microscopy
14(1)
1.3.2.6 Static and Dynamic Light Scattering
14(3)
1.4 Energy Applications
17(4)
1.4.1 Solar Cells and Photovoltaic Materials
17(2)
1.4.2 Hydrogen Storage Materials
19(1)
1.4.3 Electronic Components (Batteries, Capacitors, and Open-Circuit Voltage Applications)
20(1)
1.4.4 Superconductivity, Electrical, and Electronic Properties Relevant to Energy Applications
20(1)
1.4.5 Photochemical and Photophysical Properties Pertinent for Energy Applications
21(1)
1.5 Environmental Considerations for Fullerene Synthesis and Processing
21(7)
1.5.1 Existing Environmental Literature for C60
22(2)
1.5.2 Environmental Literature Status for Higher Fullerenes and NHs
24(1)
1.5.3 Environmental Considerations
24(23)
1.5.3.1 Consideration for Solvents
26(1)
1.5.3.2 Considerations for Derivatization
26(1)
1.5.3.3 Consideration for Coatings
27(1)
References
28(19)
2 Carbon Nanotubes
47(38)
2.1 Synthesis of Carbon Nanotubes
47(16)
2.1.1 Introduction and Structure of Carbon Nanotube
47(2)
2.1.2 Arc Discharge and Laser Ablation
49(1)
2.1.3 Chemical Vapor Deposition
50(2)
2.1.4 Aligned Growth
52(5)
2.1.5 Selective Synthesis of Carbon Nanotubes
57(6)
2.1.6 Summary
63(1)
2.2 Characterization of Nanotubes
63(10)
2.2.1 Introduction
63(1)
2.2.2 Spectroscopy
63(7)
2.2.2.1 Raman Spectroscopy
63(3)
2.2.2.2 Optical Absorption (UV-Vis-NIR)
66(2)
2.2.2.3 Photoluminescence Spectroscopy
68(2)
2.2.3 Microscopy
70(17)
2.2.3.1 Scanning Tunneling Microscopy and Transmission Electron Microscopy
70(3)
2.3 Summary
73(1)
References
73(12)
3 Synthesis and Characterization of Graphene
85(48)
3.1 Introduction
85(2)
3.2 Overview of Graphene Synthesis Methodologies
87(26)
3.2.1 Mechanical Exfoliation
90(3)
3.2.2 Chemical Exfoliation
93(4)
3.2.3 Chemical Synthesis: Graphene from Reduced Graphene Oxide
97(5)
3.2.4 Direct Chemical Synthesis
102(1)
3.2.5 CVD Process
102(9)
3.2.5.1 Graphene Synthesis by CVD Process
103(6)
3.2.5.2 Graphene Synthesis by Plasma CVD Process
109(1)
3.2.5.3 Grain and GBs in CVD Graphene
110(1)
3.2.6 Epitaxial Growth of Graphene on SiC Surface
111(2)
3.3 Graphene Characterizations
113(8)
3.3.1 Optical Microscopy
114(2)
3.3.2 Raman Spectroscopy
116(2)
3.3.3 High Resolution Transmission Electron Microscopy
118(1)
3.3.4 Scanning Probe Microscopy
119(2)
3.4 Summary and Outlook
121(1)
References
122(11)
4 Doping Carbon Nanomaterials with Heteroatoms
133(30)
4.1 Introduction
133(2)
4.2 Local Bonding of the Dopants
135(2)
4.3 Synthesis of Heterodoped Nanocarbons
137(2)
4.4 Characterization of Heterodoped Nanotubes and Graphene
139(7)
4.5 Potential Applications
146(6)
4.6 Summary and Outlook
152(1)
References
152(11)
Part II Carbon Nanomaterials For Energy Conversion 163(132)
5 High-Performance Polymer Solar Cells Containing Carbon Nanomaterials
165(26)
5.1 Introduction
165(2)
5.2 Carbon Nanomaterials as Transparent Electrodes
167(4)
5.2.1 CNT Electrode
168(1)
5.2.2 Graphene Electrode
169(2)
5.2.3 Graphene/CNT Hybrid Electrode
171(1)
5.3 Carbon Nanomaterials as Charge Extraction Layers
171(7)
5.4 Carbon Nanomaterials in the Active Layer
178(7)
5.4.1 Carbon Nanomaterials as an Electron Acceptor
178(2)
5.4.2 Carbon Nanomaterials as Additives
180(3)
5.4.3 Donor/Acceptor Functionalized with Carbon Nanomaterials
183(2)
5.5 Concluding Remarks
185(1)
Acknowledgments
185(1)
References
185(6)
6 Graphene for Energy Solutions and Its Printable Applications
191(46)
6.1 Introduction to Graphene
191(1)
6.2 Energy Harvesting from Solar Cells
192(8)
6.2.1 DSSCs
193(2)
6.2.2 Graphene and DSSCs
195(5)
6.2.2.1 Counter Electrode
195(3)
6.2.2.2 Photoanode
198(1)
6.2.2.3 Transparent Conducting Oxide
199(1)
6.2.2.4 Electrolyte
200(1)
6.3 OPV Devices
200(4)
6.3.1 Graphene and OPVs
201(3)
6.3.1.1 Transparent Conducting Oxide
201(2)
6.3.1.2 BHJ
203(1)
6.3.1.3 Hole Transport Layer
204(1)
6.4 Lithium-Ion Batteries
204(8)
6.4.1 Graphene and Lithium-Ion Batteries
205(6)
6.4.1.1 Anode Material
205(4)
6.4.1.2 Cathode Material
209(2)
6.4.2 Li-S and Li-O2 Batteries
211(1)
6.5 Supercapacitors
212(4)
6.5.1 Graphene and Supercapacitors
213(3)
6.6 Graphene Inks
216(3)
6.7 Conclusions
219(1)
References
220(17)
7 Quantum Dot and Heterojunction Solar Cells Containing Carbon Nanomaterials
237(30)
7.1 Introduction
237(1)
7.2 QD Solar Cells Containing Carbon Nanomaterials
238(11)
7.2.1 CNTs and Graphene as TCE in QD Solar Cells
238(3)
7.2.1.1 CNTs as TCE Material in QD Solar Cells
239(1)
7.2.1.2 Graphene as TCE Material in QD Solar Cells
240(1)
7.2.2 Carbon Nanomaterials and QD Composites in Solar Cells
241(6)
7.2.2.1 C60 and QD Composites
241(3)
7.2.2.2 CNTs and QD Composites
244(1)
7.2.2.3 Graphene and QD Composites
245(2)
7.2.3 Graphene QDs Solar Cells
247(2)
7.2.3.1 Physical Properties of GQDs
247(1)
7.2.3.2 Synthesis of GQDs
247(1)
7.2.3.3 PV Devices of GQDs
247(2)
7.3 Carbon Nanomaterial/Semiconductor Heterojunction Solar Cells
249(12)
7.3.1 Principle of Carbon/Semiconductor Heterojunction Solar Cells
249(1)
7.3.2 a-C/Semiconductor Heterojunction Solar Cells
250(2)
7.3.3 CNT/Semiconductor Heterojunction Solar Cells
252(1)
7.3.4 GraphenelSemiconcluctot lieteroSunction Solar Cells
253(8)
7.4 Summary
261(1)
References
261(6)
8 Fuel Cell Catalysts Based on Carbon Nanomaterials
267(28)
8.1 Introduction
267(1)
8.2 Nanocarbon-Supported Catalysts
268(8)
8.2.1 CNT-Supported Catalysts
268(3)
8.2.2 Graphene-Supported Catalysts
271(5)
8.3 Interface Interaction between Pt Clusters and Graphitic Surface
276(5)
8.4 Carbon Catalyst
281(10)
8.4.1 Catalytic Activity for ORR
281(2)
8.4.2 Effect of N-Dope on O2 Adsorption
283(2)
8.4.3 Effect of N-Dope on the Local Electronic Structure for Pyridinic-N and Graphitic-N
285(5)
8.4.3.1 Pyridinic-N
287(1)
8.4.3.2 Graphitic-N
288(2)
8.4.4 Summary of Active Sites for ORR
290(1)
References
291(4)
Part III Carbon Nanomaterials For Energy Storage 295(144)
9 Supercapacitors Based on Carbon Nanomaterials
297(42)
9.1 Introduction
297(1)
9.2 Supercapacitor Technology and Performance
298(6)
9.3 Nanoporous Carbon
304(17)
9.3.1 Supercapacitors with Nonaqueous Electrolytes
304(7)
9.3.2 Supercapacitors with Aqueous Electrolytes
311(10)
9.4 Graphene and Carbon Nanotubes
321(5)
9.5 Nanostructured Carbon Composites
326(1)
9.6 Other Composites with Carbon Nanomaterials
327(2)
9.7 Conclusions
329(1)
References
330(9)
10 Lithium-Ion Batteries Based on Carbon Nanomaterials
339(26)
10.1 Introduction
339(5)
10.2 Improving Li-Ion Battery Energy Density
344(1)
10.3 Improvements to Lithium-Ion Batteries Using Carbon Nanomaterials
345(1)
10.3.1 Carbon Nanomaterials as Active Materials
345(1)
10.4 Carbon Nanomaterials as Conductive Additives
346(2)
10.4.1 Current and SOA Conductive Additives
346(2)
10.5 SWCNT Additives to Increase Energy Density
348(3)
10.6 Carbon Nanomaterials as Current Collectors
351(3)
10.6.1 Current Collector Options
351(3)
10.7 Implementation of Carbon Nanomaterial Current Collectors for Standard Electrode Composites
354(2)
10.7.1 Anode: MCMB Active Material
354(2)
10.7.2 Cathode: NCA Active Material
356(1)
10.8 Implementation of Carbon Nanomaterial Current Collectors for Alloying Active Materials
356(2)
10.9 Ultrasonic Bonding for Pouch Cell Development
358(1)
10.10 Conclusion
359(3)
References
362(3)
11 Lithium/Sulfur Batteries Based on Carbon Nanomaterials
365(20)
11.1 Introduction
365(1)
11.2 Fundamentals of Lithium/Sulfur Cells
366(4)
11.2.1 Operating Principles
366(2)
11.2.2 Scientific Problems
368(1)
11.2.2.1 Dissolution and Shuttle Effect of Lithium Polysulfides
369(1)
11.2.2.2 Insulating Nature of Sulfur and Li2S
369(1)
11.2.2.3 Volume Change of the Sulfur Electrode during Cycling
369(1)
11.2.3 Research Strategy
369(1)
11.3 Nanostructure Carbon-Sulfur
370(10)
11.3.1 Porous Carbon-Sulfur Composite
371(2)
11.3.2 One-Dimensional Carbon-Sulfur Composite
373(2)
11.3.3 Two-Dimensional Carbon (Graphene)-Sulfur
375(2)
11.3.4 Three-Dimensional Carbon Paper-Sulfur
377(1)
11.3.5 Preparation Method of Sulfur-Carbon Composite
377(3)
11.4 Carbon Layer as a Polysu1fide Separator
380(1)
11.5 Opportunities and Perspectives
381(1)
References
382(3)
12 Lithium-Air Batteries Based on Carbon Nanomaterials
385(22)
12.1 Metal-Air Batteries
385(2)
12.2 Li-Air Chemistry
387(6)
12.2.1 Aqueous Electrolyte Cell
387(2)
12.2.2 Nonaqueous Aprotic Electrolyte Cell
389(2)
12.2.3 Mixed Aqueous/Aprotic Electrolyte Cell
391(1)
12.2.4 All Solid-State Cell
391(2)
12.3 Carbon Nanomaterials for Li-Air Cells Cathode
393(1)
12.4 Amorphous Carbons
393(2)
12.4.1 Porous Carbons
393(2)
12.5 Graphitic Carbons
395(8)
12.5.1 Carbon Nanotubes
395(3)
12.5.2 Graphene
398(2)
12.5.3 Composite Air Electrodes
400(3)
12.6 Conclusions
403(1)
References
403(4)
13 Carbon-Based Nanomaterials for H2 Storage
407(32)
13.1 Introduction
407(1)
13.2 Hydrogen Storage in Fullerenes
408(6)
13.3 Hydrogen Storage in Carbon Nanotubes
414(5)
13.4 Hydrogen Storage in Graphene-Based Materials
419(8)
13.5 Conclusions
427(1)
Acknowledgments
428(1)
References
428(11)
Index 439
Wen Lu, PhD, obtained his BSc and MSc from Yunnan University in China and his PhD at the University of Wollongong in Australia. He has been a Senior Research Scientist and Group Leader leading research in multiple research companies in USA. His research activities have been focused on the applications of electrochemistry and advanced materials to the development of a range of electrochemical devices, including energy conversion and storage devices.

Jong-Beom Baek, PhD, is a Professor of the School of Energy and Chemical Engineering/Director of Low-Dimensional Carbon Materials Center (LCMC) in Ulsan National Institute of Science and Technology (UNIST, Korea). He obtained PhD in Polymer Science from the University of Akron (USA). Dr. Baek's current research interests focus on the defect-selective functionalization of carbon-based nanomaterials for application-specific purposes, including energy-related applications.

Liming Dai, PhD, is Case Western Reserve University's Kent Hale Smith Professor in the Department of Macromolecular Science and Engineering. He is also director of the Center of Advanced Science and Engineering for Carbon (Case4Carbon). Dr. Dai received a BSc degree from Zhejiang University, and a PhD from the Australian National University.