Atjaunināt sīkdatņu piekrišanu

E-grāmata: Cartan for Beginners

  • Formāts: 378 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 02-Jan-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470418014
  • Formāts - PDF+DRM
  • Cena: 88,13 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 378 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 02-Jan-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470418014

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.
Preface ix
Moving Frames and Exterior Differential Systems
1(34)
Geometry of surfaces in E3 in coordinates
2(3)
Differential equations in coordinates
5(3)
Introduction to differential equations without coordinates
8(4)
Introduction to geometry without coordinates: curves in E2
12(3)
Submanifolds of homogeneous spaces
15(1)
The Maurer-Cartan form
16(4)
Plane curves in other geometries
20(3)
Curves in E3
23(3)
Exterior differential systems and jet spaces
26(9)
Euclidean Geometry and Riemannian Geometry
35(36)
Gauss and mean curvature via frames
36(3)
Calculation of H and K for some examples
39(3)
Darboux frames and applications
42(1)
What do H and K tell us?
43(2)
Invariants for n-dimensional submanifolds of En+s
45(2)
Intrinsic and extrinsic geometry
47(10)
Space forms: the sphere and hyperbolic space
57(1)
Curves on surfaces
58(3)
The Gauss-Bonnet and Poincare-Hopf theorems
61(5)
Non-orthonormal frames
66(5)
Projective Geometry
71(72)
Grassmannians
72(4)
Frames and the projective second fundamental form
76(5)
Algebraic varieties
81(8)
Varieties with degenerate Gauss mappings
89(5)
Higher-order differential invariants
94(4)
Fundamental forms of some homogeneous varieties
98(9)
Higher-order Fubini forms
107(6)
Ruled and uniruled varieties
113(2)
Varieties with vanishing Fubini cubic
115(3)
Dual varieties
118(5)
Associated varieties
123(2)
More on varieties with degenerate Gauss maps
125(3)
Secant and tangential varieties
128(4)
Rank restriction theorems
132(2)
Local study of smooth varieties with degenerate tangential varieties
134(3)
Generalized Monge systems
137(2)
Complete intersections
139(4)
Cartan-Kahler I: Linear Algebra and Constant-Coefficient Homogeneous Systems
143(20)
Tableaux
144(4)
First example
148(2)
Second example
150(3)
Third example
153(1)
The general case
154(3)
The characteristic variety of a tableau
157(6)
Cartan-Kahler II: The Cartan Algorithm for Linear Pfaffian Systems
163(40)
Linear Pfaffian systems
163(2)
First example
165(1)
Second example: constant coefficient homogeneous systems
166(3)
The local isometric embedding problem
169(4)
The Cartan algorithm formalized: tableau, torsion and prolongation
173(4)
Summary of Cartan's algorithm for linear Pfaffian systems
177(2)
Additional remarks on the theory
179(3)
Examples
182(7)
Functions whose Hessians commute, with remarks on singular solutions
189(2)
The Cartan-Janet Isometric Embedding Theorem
191(3)
Isometric embeddings of space forms (mostly flat ones)
194(3)
Calibrated submanifolds
197(6)
Applications to PDE
203(40)
Symmetries and Cauchy characteristics
204(8)
Second-order PDE and Monge characteristics
212(3)
Derived systems and the method of Darboux
215(7)
Monge-Ampere systems and Weingarten surfaces
222(9)
Integrable extensions and Backlund transformations
231(12)
Cartan-Kahler III: The General Case
243(24)
Integral elements and polar spaces
244(7)
Example: Triply orthogonal systems
251(3)
Statement and proof of Cartan-Kahler
254(2)
Cartan's Test
256(3)
More examples of Cartan's Test
259(8)
Geometric Structures and Connections
267(44)
G-structures
267(8)
How to differentiate sections of vector bundles
275(3)
Connections on FG and differential invariants of G-structures
278(5)
Induced vector bundles and connections on induced bundles
283(3)
Holonomy
286(9)
Extended example: Path geometry
295(13)
Frobenius and generalized conformal structures
308(3)
Appendix A. Linear Algebra and Representation Theory
311(24)
A.1. Dual spaces and tensor products
311(5)
A.2. Matrix Lie groups
316(2)
A.3. Complex vector spaces and complex structures
318(2)
A.4. Lie algebras
320(3)
A.5. Division algebras and the simple group G2
323(3)
A.6. A smidgen of representation theory
326(4)
A.7. Clifford algebras and spin groups
330(5)
Appendix B. Differential Forms
335(8)
B.1. Differential forms and vector fields
335(2)
B.2. Three difinitions of the exterior derivative
337(2)
B.3. Basic and semi-basic forms
339(1)
B.4. Differential ideals
340(3)
Appendix C. Complex Structures and Complex Manifolds
343(6)
C.1. Complex manifolds
343(4)
C.2. The Cauchy-Riemann equations
347(2)
Appendix D. Initial Value Problems
349(6)
Hints and Answers to Selected Exercises 355(8)
Bibliography 363(8)
Index 371