Preface to the Second Edition |
|
v | (2) |
Preface to the First Edition |
|
vii | |
Introduction |
|
1 | (6) |
|
I. Categories, Functors, and Natural Transformations |
|
|
7 | (24) |
|
|
7 | (3) |
|
|
10 | (3) |
|
|
13 | (3) |
|
4. Natural Transformations |
|
|
16 | (3) |
|
5. Monics, Epis, and Zeros |
|
|
19 | (2) |
|
|
21 | (3) |
|
|
24 | (3) |
|
|
27 | (4) |
|
II. Constructions on Categories |
|
|
31 | (24) |
|
|
31 | (2) |
|
2. Contravariance and Opposites |
|
|
33 | (3) |
|
3. Products of Categories |
|
|
36 | (4) |
|
|
40 | (2) |
|
5. The Category of All Categories |
|
|
42 | (3) |
|
|
45 | (3) |
|
7. Graphs and Free Categories |
|
|
48 | (3) |
|
|
51 | (4) |
|
III. Universals and Limits |
|
|
55 | (24) |
|
|
55 | (4) |
|
|
59 | (3) |
|
3. Coproducts and Colimits |
|
|
62 | (6) |
|
|
68 | (4) |
|
5. Categories with Finite Products |
|
|
72 | (3) |
|
|
75 | (1) |
|
7. Colimits of Representable Functors |
|
|
76 | (3) |
|
|
79 | (30) |
|
|
79 | (7) |
|
|
86 | (4) |
|
3. Reflective Subcategories |
|
|
90 | (2) |
|
4. Equivalence of Categories |
|
|
92 | (3) |
|
5. Adjoints for Preorders |
|
|
95 | (2) |
|
6. Cartesian Closed Categories |
|
|
97 | (2) |
|
7. Transformations of Adjoints |
|
|
99 | (4) |
|
8. Composition of Adjoints |
|
|
103 | (2) |
|
9. Subsets and Characteristic Functions |
|
|
105 | (1) |
|
|
106 | (3) |
|
|
109 | (28) |
|
|
109 | (3) |
|
2. Limits by Products and Equalizers |
|
|
112 | (3) |
|
3. Limits with Parameters |
|
|
115 | (1) |
|
4. Preservation of Limits |
|
|
116 | (2) |
|
|
118 | (2) |
|
6. Freyd's Adjoint Functor Theorem |
|
|
120 | (6) |
|
7. Subobjects and Generators |
|
|
126 | (2) |
|
8. The Special Adjoint Functor Theorem |
|
|
128 | (4) |
|
|
132 | (5) |
|
|
137 | (24) |
|
|
137 | (2) |
|
|
139 | (3) |
|
3. The Comparison with Algebras |
|
|
142 | (2) |
|
4. Words and Free Semigroups |
|
|
144 | (3) |
|
5. Free Algebras for a Monad |
|
|
147 | (2) |
|
|
149 | (2) |
|
|
151 | (5) |
|
8. Algebras Are T-Algebras |
|
|
156 | (1) |
|
9. Compact Hausdorff Spaces |
|
|
157 | (4) |
|
|
161 | (30) |
|
|
161 | (4) |
|
|
165 | (5) |
|
|
170 | (4) |
|
|
174 | (1) |
|
5. The Simplicial Category |
|
|
175 | (5) |
|
|
180 | (4) |
|
|
184 | (1) |
|
8. Compactly Generated Spaces |
|
|
185 | (3) |
|
|
188 | (3) |
|
|
191 | (20) |
|
|
191 | (3) |
|
|
194 | (4) |
|
|
198 | (4) |
|
|
202 | (9) |
|
|
211 | (22) |
|
|
211 | (3) |
|
|
214 | (3) |
|
|
217 | (1) |
|
|
218 | (4) |
|
|
222 | (4) |
|
|
226 | (2) |
|
|
228 | (2) |
|
8. Iterated Ends and Limits |
|
|
230 | (3) |
|
|
233 | (18) |
|
|
233 | (2) |
|
|
235 | (1) |
|
|
236 | (4) |
|
4. Kan Extensions as Coends |
|
|
240 | (3) |
|
5. Pointwise Kan Extensions |
|
|
243 | (2) |
|
|
245 | (3) |
|
7. All Concepts Are Kan Extensions |
|
|
248 | (3) |
|
XI. Symmetry and Braiding in Monoidal Categories |
|
|
251 | (16) |
|
1. Symmetric Monoidal Categories |
|
|
251 | (4) |
|
|
255 | (2) |
|
3. Strict Monoidal Categories |
|
|
257 | (3) |
|
4. The Braid Groups B(n) and the Braid Category |
|
|
260 | (3) |
|
|
263 | (3) |
|
|
266 | (1) |
|
XII. Structures in Categories |
|
|
267 | (22) |
|
|
267 | (3) |
|
2. The Nerve of a Category |
|
|
270 | (2) |
|
|
272 | (4) |
|
4. Operations in 2-Categories |
|
|
276 | (3) |
|
|
279 | (2) |
|
|
281 | (2) |
|
7. Examples of Bicategories |
|
|
283 | (2) |
|
8. Crossed Modules and Categories in Grp |
|
|
285 | (4) |
Appendix. Foundations |
|
289 | (4) |
|
Table of Standard Categories: Objects and Arrows |
|
|
293 | (2) |
|
|
295 | (2) |
Bibliography |
|
297 | (6) |
Index |
|
303 | |