Atjaunināt sīkdatņu piekrišanu

E-grāmata: Categories for the Working Mathematician

  • Formāts: PDF+DRM
  • Sērija : Graduate Texts in Mathematics 5
  • Izdošanas datums: 17-Apr-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781475747218
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 60,66 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Graduate Texts in Mathematics 5
  • Izdošanas datums: 17-Apr-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781475747218
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.

Categories for the Working Mathematician begins with foundations, illuminating concepts such as category, functor, natural transformation, and duality. It then continues by extensively illustrating these categorical concepts while presenting applications to more advanced topics. This second edition includes many revisions and additions.

Recenzijas

From the reviews of the second edition:

The book under review is an introduction to the theory of categories which, as the title suggests, is addressed to the (no-nonsense) working mathematician, thus presenting the ideas and concepts of Category Theory in a broad context of mainstream examples (primarily from algebra). the book remains an authoritative source on the foundations of the theory and an accessible first introduction to categories. It is very well-written, with plenty of interesting discussions and stimulating exercises. (Ittay Weiss, MAA Reviews, July, 2014)

Second Edition

S.M. Lane

Categories for the Working Mathematician

"A very useful introduction to category theory."INTERNATIONALE MATHEMATISCHE NACHRICHTEN

Papildus informācija

2nd edition
Preface to the Second Edition v(2)
Preface to the First Edition vii
Introduction 1(6)
I. Categories, Functors, and Natural Transformations
7(24)
1. Axioms for Categories
7(3)
2. Categories
10(3)
3. Functors
13(3)
4. Natural Transformations
16(3)
5. Monics, Epis, and Zeros
19(2)
6. Foundations
21(3)
7. Large Categories
24(3)
8. Hom-Sets
27(4)
II. Constructions on Categories
31(24)
1. Duality
31(2)
2. Contravariance and Opposites
33(3)
3. Products of Categories
36(4)
4. Functor Categories
40(2)
5. The Category of All Categories
42(3)
6. Comma Categories
45(3)
7. Graphs and Free Categories
48(3)
8. Quotient Categories
51(4)
III. Universals and Limits
55(24)
1. Universal Arrows
55(4)
2. The Yoneda Lemma
59(3)
3. Coproducts and Colimits
62(6)
4. Products and Limits
68(4)
5. Categories with Finite Products
72(3)
6. Groups in Categories
75(1)
7. Colimits of Representable Functors
76(3)
IV. Adjoints
79(30)
1. Adjunctions
79(7)
2. Examples of Adjoints
86(4)
3. Reflective Subcategories
90(2)
4. Equivalence of Categories
92(3)
5. Adjoints for Preorders
95(2)
6. Cartesian Closed Categories
97(2)
7. Transformations of Adjoints
99(4)
8. Composition of Adjoints
103(2)
9. Subsets and Characteristic Functions
105(1)
10. Categories Like Sets
106(3)
V. Limits
109(28)
1. Creation of Limits
109(3)
2. Limits by Products and Equalizers
112(3)
3. Limits with Parameters
115(1)
4. Preservation of Limits
116(2)
5. Adjoints on Limits
118(2)
6. Freyd's Adjoint Functor Theorem
120(6)
7. Subobjects and Generators
126(2)
8. The Special Adjoint Functor Theorem
128(4)
9. Adjoints in Topology
132(5)
VI. Monads and Algebras
137(24)
1. Monads in a Category
137(2)
2. Algebras for a Monad
139(3)
3. The Comparison with Algebras
142(2)
4. Words and Free Semigroups
144(3)
5. Free Algebras for a Monad
147(2)
6. Split Coequalizers
149(2)
7. Beck's Theorem
151(5)
8. Algebras Are T-Algebras
156(1)
9. Compact Hausdorff Spaces
157(4)
VII. Monoids
161(30)
1. Monoidal Categories
161(4)
2. Coherence
165(5)
3. Monoids
170(4)
4. Actions
174(1)
5. The Simplicial Category
175(5)
6. Monads and Homology
180(4)
7. Closed Categories
184(1)
8. Compactly Generated Spaces
185(3)
9. Loops and Suspensions
188(3)
VIII. Abelian Categories
191(20)
1. Kernels and Cokernels
191(3)
2. Additive Categories
194(4)
3. Abelian Categories
198(4)
4. Diagram Lemmas
202(9)
IX. Special Limits
211(22)
1. Filtered Limits
211(3)
2. Interchange of Limits
214(3)
3. Final Functors
217(1)
4. Diagonal Naturality
218(4)
5. Ends
222(4)
6. Coends
226(2)
7. Ends with Parameters
228(2)
8. Iterated Ends and Limits
230(3)
X. Kan Extensions
233(18)
1. Adjoints and Limits
233(2)
2. Weak Universality
235(1)
3. The Kan Extension
236(4)
4. Kan Extensions as Coends
240(3)
5. Pointwise Kan Extensions
243(2)
6. Density
245(3)
7. All Concepts Are Kan Extensions
248(3)
XI. Symmetry and Braiding in Monoidal Categories
251(16)
1. Symmetric Monoidal Categories
251(4)
2. Monoidal Functors
255(2)
3. Strict Monoidal Categories
257(3)
4. The Braid Groups B(n) and the Braid Category
260(3)
5. Braided Coherence
263(3)
6. Perspectives
266(1)
XII. Structures in Categories
267(22)
1. Internal Categories
267(3)
2. The Nerve of a Category
270(2)
3. 2-Categories
272(4)
4. Operations in 2-Categories
276(3)
5. Single-Set Categories
279(2)
6. Bicategories
281(2)
7. Examples of Bicategories
283(2)
8. Crossed Modules and Categories in Grp
285(4)
Appendix. Foundations 289(4)
Table of Standard Categories: Objects and Arrows
293(2)
Table of Terminology
295(2)
Bibliography 297(6)
Index 303