Atjaunināt sīkdatņu piekrišanu

E-grāmata: Causal Inference

3.33/5 (92 ratings by Goodreads)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 34,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Causality is central to the understanding and use of data; without an understanding of cause and effect relationships, we cannot use data to answer important questions in medicine and many other fields"--

A nontechnical guide to the basic ideas of modern causal inference, with illustrations from health, the economy, and public policy.

Which of two antiviral drugs does the most to save people infected with Ebola virus? Does a daily glass of wine prolong or shorten life? Does winning the lottery make you more or less likely to go bankrupt? How do you identify genes that cause disease? Do unions raise wages? Do some antibiotics have lethal side effects? Does the Earned Income Tax Credit help people enter the workforce?
 
Causal Inference provides a brief and nontechnical introduction to randomized experiments, propensity scores, natural experiments, instrumental variables, sensitivity analysis, and quasi-experimental devices. Ideas are illustrated with examples from medicine, epidemiology, economics and business, the social sciences, and public policy.
Series Foreword ix
List of Examples
xi
List of Methodological Topics
xiii
1 The Effects Caused by Treatments
1(20)
2 Randomized Experiments
21(26)
3 Observational Studies: The Problem
47(20)
4 Adjustments for Measured Covariates
67(18)
5 Sensitivity to Unmeasured Covariates
85(18)
6 Quasi-Experimental Devices in the Design of Observational Studies
103(14)
7 Natural Experiments, Discontinuities, and Instruments
117(42)
8 Replication, Resolution, and Evidence Factors
159(1)
9 Uncertainty and Complexity in Causal Inference
159(16)
Postscript: Key Ideas,
Chapter by
Chapter
175(4)
Glossary 179(2)
Notes 181(8)
Bibliography 189(8)
Further Reading 197(2)
Index 199
Paul R. Rosenbaum is the Robert G. Putzel Professor Emeritus of Statistics and Data Science at the Wharton School of the University of Pennsylvania. He is the author of Observation and Experiment: An Introduction to Causal Inference, Design of Observational Studies, Observational Studies, and Replication and Evidence Factors in Observational Studies.