Atjaunināt sīkdatņu piekrišanu

E-grāmata: Causal Inference in Pharmaceutical Statistics

(AbbVie, Chicago, USA)
  • Formāts - PDF+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Causal Inference in Pharmaceutical Statistics introduces the basic concepts and fundamental methods of causal inference relevant to pharmaceutical statistics. This book covers causal thinking for different types of commonly used study designs in the pharmaceutical industry, including but not limited to randomized controlled clinical trials, longitudinal studies, single-arm clinical trials with external controls, and real-world evidence studies. The book starts with the central questions in drug development and licensing, takes the reader through the basic concepts and methods via different study types and through different stages, and conclude with a roadmap to conduct causal inference in clinical studies. The book is intended for clinical statisticiansand epidemiologists working in the pharmaceutical industry. It will also be useful to graduate students in statistics, biostatistics, and data science looking to pursue a career in the pharmaceutical industry"--

Causal Inference in Pharmaceutical Statistics introduces the basic concepts and fundamental methods of causal inference relevant to pharmaceutical statistics. This book covers causal thinking for different types of commonly used study designs in the pharmaceutical industry, including but not limited to randomized controlled clinical trials, longitudinal studies, singlearm clinical trials with external controls, and real-world evidence studies. The book starts with the central questions in drug development and licensing, takes the reader through the basic concepts and methods via different study types and through different stages, and concludes with a roadmap to conduct causal inference in clinical studies. The book is intended for clinical statisticians and epidemiologists working in the pharmaceutical industry. It will also be useful to graduate students in statistics, biostatistics, and data science looking to pursue a career in the pharmaceutical industry.

Key Features:

  • Causal inference book for clinical statisticians in the pharmaceutical industry
  • Introductory level on the most important concepts and methods
  • Align with FDA and ICH guidance documents
  • Across different stages of clinical studies: plan, design, conduct, analysis, and interpretation
  • Cover a variety of commonly used study designs


Causal Inference in Pharmaceutical Statistics introduces the basic concepts and fundamental methods of causal inference relevant to pharmaceutical statistics. This book covers causal thinking for different types of commonly used study designs in the pharmaceutical industry.

Preface

1. Introduction

2. Randomized Controlled Clinical Trials

3. Missing Data Handling

4. Intercurrent Events Handling

5. Longitudinal Studies

6. Real-World Evidence Studies

7. The Art of Estimation (I): M-estimation

8. The Art of Estimation (II): TMLE

9. The Art of Estimation (III): LTMLE

10. Sensitivity Analysis

11. A Roadmap for Causal Inference

12. Applications of the Roadmap

Bibliography

Yixin Fang, Ph.D. is Director of Statistics and Research Fellow at AbbVie Inc. He obtained his Ph.D. in Statistics from Columbia University and is an experienced statistician and data scientist who has a history of working in both the biopharmaceutical industry and academia.