Atjaunināt sīkdatņu piekrišanu

E-grāmata: Ceramic Nanocomposites

Edited by (University of Calcutta), Edited by (Indian Institute of Technology, India)
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 208,19 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Ceramic nanocomposites have been found to have improved hardness, strength, toughness and creep resistance compared to conventional ceramic matrix composites. Ceramic nanocomposites reviews the structure and properties of these nanocomposites as well as manufacturing and applications.

Part one looks at the properties of different ceramic nanocomposites, including thermal shock resistance, flame retardancy, magnetic and optical properties as well as failure mechanisms. Part two deals with the different types of ceramic nanocomposites, including the use of ceramic particles in metal matrix composites, carbon nanotube-reinforced glass-ceramic matrix composites, high temperature superconducting ceramic nanocomposites and ceramic particle nanofluids. Part three details the processing of nanocomposites, including the mechanochemical synthesis of metallicceramic composite powders, sintering of ultrafine and nanosized ceramic and metallic particles and the surface treatment of carbon nanotubes using plasma technology. Part four explores the applications of ceramic nanocomposites in such areas as energy production and the biomedical field.

With its distinguished editors and international team of expert contributors, Ceramic nanocomposites is a technical guide for professionals requiring knowledge of ceramic nanocomposites, and will also offer a deeper understanding of the subject for researchers and engineers within any field dealing with these materials.
Contributor contact details xiii
Woodhead Publishing Series in Composites Science and Engineering xvii
Part I Properties
1(182)
1 Thermal shock resistant and flame retardant ceramic nanocomposites
3(48)
N. R. Bose
1.1 Introduction
4(3)
1.2 Design of thermal shock resistant and flame retardant ceramic nanocomposites
7(2)
1.3 Types and processing of thermally stable ceramic nanocomposites
9(2)
1.4 Thermal properties of particular ceramic nanocomposites
11(12)
1.5 Interface characteristics of ceramic nanocomposites
23(3)
1.6 Superplasticity characteristics of thermal shock resistant ceramic nanocomposites
26(3)
1.7 Densification for the fabrication of thermal shock resistant ceramic nanocomposites
29(2)
1.8 Test methods for the characterization and evaluation of thermal shock resistant ceramic nanocomposites
31(3)
1.9 Conclusions
34(1)
1.10 Future trends
35(2)
1.11 Sources of further information and advice
37(1)
1.12 References
38(13)
2 Magnetic properties of ceramic nanocomposites
51(41)
D. D. Majumder
D. D. Majumder
S. Karan
2.1 Introduction
51(2)
2.2 Magnetic nanocomposites
53(1)
2.3 Size-dependent magnetic properties
54(2)
2.4 Colossal magnetoresistance (CMR)
56(3)
2.5 Electrical transport/resistivity
59(3)
2.6 Spin-dependent single-electron tunneling phenomena
62(8)
2.7 Applications: cobalt-doped nickel nanofibers as magnetic materials
70(2)
2.8 Applications: amorphous soft magnetic materials
72(2)
2.9 Applications: assembly of magnetic nanostructures
74(8)
2.10 References and further reading
82(10)
3 Optical properties of ceramic nanocomposites
92(25)
R. Banerjee
J. Mukherjee
3.1 Introduction
92(2)
3.2 Optical properties of ceramic nanocomposites
94(3)
3.3 Transmittance and absorption
97(4)
3.4 Non-linearity
101(3)
3.5 Luminescence
104(8)
3.6 Optical properties of glass carbon nanotube (CNT) composites
112(3)
3.7 References
115(2)
4 Failure mechanisms of ceramic nanocomposites
117(36)
P. Hvizdos
P. Tatarko
A. Duszova
J. Dusza
4.1 Introduction
117(2)
4.2 Rupture strength
119(8)
4.3 Fracture origins
127(5)
4.4 Crack propagation, toughening mechanisms
132(6)
4.5 Preventing failures
138(3)
4.6 Wear of ceramic nanocomposites
141(7)
4.7 Future trends
148(2)
4.8 Sources for further information
150(1)
4.9 References
150(3)
5 Multiscale modeling of the structure and properties of ceramic nanocomposites
153(30)
V. Tomar
5.1 Introduction
153(2)
5.2 Multiscale modeling and material design
155(4)
5.3 Multiscale modeling approach
159(3)
5.4 The cohesive finite element method (CFEM)
162(4)
5.5 Molecular dynamics (MD) modeling
166(5)
5.6 Dynamic fracture analyses
171(5)
5.7 Conclusions
176(1)
5.8 References
177(6)
Part II Types
183(214)
6 Ceramic nanoparticles in metal matrix composites
185(23)
F. He
6.1 Introduction
185(4)
6.2 Material selection
189(4)
6.3 Physical and mechanical properties of metal matrix nanocomposites (MMNCs)
193(5)
6.4 Different manufacturing methods for MMNCs
198(5)
6.5 Future trends
203(1)
6.6 References
203(5)
7 Carbon nanotube (CNT) reinforced glass and glass-ceramic matrix composites
208(49)
T. Subhani
M. S. P. Shaffer
A. R. Boccaccini
7.1 Introduction
208(1)
7.2 Carbon nanotubes
209(6)
7.3 Glass and glass-ceramic matrix composites
215(2)
7.4 Glass/glass-ceramic matrix composites containing carbon nanotubes: manufacturing process
217(7)
7.5 Microstructural characterization
224(5)
7.6 Properties
229(17)
7.7 Applications
246(1)
7.8 Conclusions and scope
247(1)
7.9 References
248(9)
8 Ceramic ultra-thin coatings using atomic layer deposition
257(27)
X. Liang
D. M. King
A. W. Weimer
8.1 Introduction
257(3)
8.2 Ultra-thin ceramic films coated on ceramic particles by atomic layer deposition (ALD)
260(7)
8.3 Using ultra-thin ceramic films as a protective layer
267(2)
8.4 Enhanced lithium-ion batteries using ultra-thin ceramic films
269(4)
8.5 Using ultra-thin ceramic films in tissue engineering
273(3)
8.6 Conclusions and future trends
276(1)
8.7 References
277(7)
9 High-temperature superconducting ceramic nanocomposites
284(39)
A. O. Tonoyan
S. P. Davtyan
9.1 Introduction
284(2)
9.2 Material preparation, characterization and testing
286(2)
9.3 Superconducting (SC) properties of polymer-ceramic nanocomposites manufactured by hot pressing
288(11)
9.4 Mechanical properties of SC polymer-ceramic nanocomposites
299(5)
9.5 Interphase phenomena in SC polymer-ceramic nanocomposites
304(4)
9.6 Influences on the magnetic properties of SC polymer-ceramic nanocomposites
308(2)
9.7 The use of metal-complex polymer binders to enhance the SC properties of polymer-ceramic nanocomposites
310(3)
9.8 Aging of SC polymer-ceramic nanocomposites
313(4)
9.9 Conclusions
317(2)
9.10 References
319(4)
10 Nanofluids including ceramic and other nanoparticles: applications and rheological properties
323(23)
G. Paul
I. Manna
10.1 Introduction
323(2)
10.2 The development of nanofluids
325(1)
10.3 Potential benefits of nanofluids
326(1)
10.4 Applications of nanofluids
327(3)
10.5 The rheology of nanofluids
330(7)
10.6 Modeling the viscosity of nanofluids
337(4)
10.7 Summary and future trends
341(1)
10.8 References
342(4)
11 Nanofluids including ceramic and other nanoparticles: synthesis and thermal properties
346(51)
G. Paul
I. Manna
11.1 Introduction
346(1)
11.2 Synthesis of nanofluids
347(4)
11.3 The thermal conductivity of nanofluids
351(8)
11.4 Modeling of thermal conductivity
359(7)
11.5 Summary and future trends
366(1)
11.6 References
367(9)
11.7 Appendix: thermal conductivity of nanofluids prepared by two-step process
376(21)
Part III Processing
397(110)
12 Mechanochemical synthesis of metallic-ceramic composite powders
399(32)
K. Wieczorek-Ciurowa
12.1 Introduction
399(2)
12.2 Composite powder formation: bottom-up and top-down techniques
401(9)
12.3 Monitoring mechanochemical processes
410(2)
12.4 Examples of applied high-energy milling in the synthesis of selected metallic-ceramic composite powders
412(1)
12.5 Copper-based composite powders with Al2O3
413(6)
12.6 Nickel-based composite powders with Al2O3
419(5)
12.7 Other possible variants of the synthesis of metal matrix-ceramic composites in Cu-Al-O and Ni-Al-O elemental systems using mechanical treatment ex situ and in situ
424(2)
12.8 Conclusions
426(1)
12.9 Acknowledgements
426(1)
12.10 References
427(4)
13 Sintering of ultrafine and nanosized ceramic and metallic particles
431(43)
Z. Z. Fang
H. Wang
13.1 Introduction
431(2)
13.2 Thermodynamic driving force for the sintering of nanosized particles
433(3)
13.3 Kinetics of the sintering of nanosized particles
436(12)
13.4 Grain growth during sintering of nano particles
448(14)
13.5 Techniques for controlling grain growth while achieving full densification
462(4)
13.6 Conclusion
466(2)
13.7 References
468(6)
14 Surface treatment of carbon nanotubes using plasma technology
474(33)
B. Ruelle
C. Bittencourt
P. Dubois
14.1 Introduction
474(3)
14.2 Carbon nanotube surface chemistry and solution-based functionalization
477(6)
14.3 Plasma treatment of carbon nanotubes
483(15)
14.4 Summary
498(1)
14.5 References
499(8)
Part IV Applications
507(76)
15 Ceramic nanocomposites for energy storage and power generation
509(21)
B. Kumar
15.1 Introduction
509(2)
15.2 Electrical properties
511(3)
15.3 Ionic nanocomposites
514(12)
15.4 Energy storage and power generation devices
526(2)
15.5 Future trends
528(1)
15.6 References
528(2)
16 Biomedical applications of ceramic nanocomposites
530(18)
N. Garmendia
B. Olalde
I. Obieta
16.1 Introduction
530(1)
16.2 Why ceramic nanocomposites are used in biomedical applications
531(3)
16.3 Orthopaedic and dental implants
534(5)
16.4 Tissue engineering
539(3)
16.5 Future trends
542(1)
16.6 References
543(5)
17 Synthetic biopolymer/layered silicate nanocomposites for tissue engineering scaffolds
548(35)
M. Okamoto
17.1 Introduction
548(2)
17.2 Tissue engineering applications
550(1)
17.3 Synthetic biopolymers and their nanocomposites for tissue engineering
551(8)
17.4 Three-dimensional porous scaffolds
559(7)
17.5 In-vitro degradation
566(1)
17.6 Stem cell-scaffold interactions
567(5)
17.7 Conclusions
572(1)
17.8 References
573(7)
17.9 Appendix: abbreviations
580(3)
Index 583
Rajat Banerjee is a Senior Officer (Research and Development) at the Central Glass and Ceramic Research Institute, Kolkata, India. Dr Banerjee has undertaken research at the Friedrich Schiller University in Germany, The University of Maryland and the National Institute of Standards and Technology (NIST) in the USA. He published widely in the area of ceramic nanocomposites. He has received an Indo-EU Heritage Fellowship, the best paper award at the XVIIth International Congress on Glass and a Certificate of Appreciation from NIST for his outstanding research on nanomaterials. Indranil Manna is Director of the Indian Institute of Technology (IIT) Kanpur, India. Professor Manna was formerly Director of the Central Glass and Ceramic Research Institute, Kolkata. He has taught physical metallurgy at IIT Kharagpur for over 25 years and was a Visiting Professor in Germany, USA, Singapore, Poland, Russia and France. Currently a JC Bose Fellow in India, Professor Manna has written over 250 journal publications and is the recipient of numerous national and international awards, and is a Fellow of all four national academies in India (INSA, IAS, NASI, INAE).