|
Chapter 1 Primer on Spacecraft Dynamics |
|
|
1 | (32) |
|
1.1 Orbital Motion of Spacecraft |
|
|
2 | (10) |
|
1.1.1 Gravitational Field of a Particle |
|
|
2 | (1) |
|
1.1.2 Gravitational Field of a Rigid Body |
|
|
2 | (2) |
|
1.1.3 Dynamical Equations of Two-body System |
|
|
4 | (1) |
|
|
5 | (3) |
|
1.1.5 Characteristics of Keplerian Orbit |
|
|
8 | (2) |
|
|
10 | (2) |
|
1.2 Environmental Torques Acting on Spacecraft |
|
|
12 | (5) |
|
1.2.1 Gravitational Torque |
|
|
12 | (3) |
|
|
15 | (2) |
|
1.3 Attitude Motion of Spacecraft in the Gravitational Field |
|
|
17 | (10) |
|
1.3.1 Euler's Equations and Poisson's Equations |
|
|
17 | (2) |
|
|
19 | (3) |
|
1.3.3 Stability of Relative Equilibrium |
|
|
22 | (4) |
|
1.3.4 Attitude Motion of a Gyrostat |
|
|
26 | (1) |
|
1.4 Attitude Motion of Torque-free Spacecraft |
|
|
27 | (5) |
|
1.4.1 Torque-free Rigid Body |
|
|
27 | (2) |
|
1.4.2 Torque-free Gyrostat |
|
|
29 | (2) |
|
1.4.3 Influence of Energy Dissipation on Spinning Spacecraft |
|
|
31 | (1) |
|
|
32 | (1) |
|
Chapter 2 A Survey of Chaos Theory |
|
|
33 | (30) |
|
2.1 The Overview of Chaos |
|
|
34 | (6) |
|
2.1.1 Descriptions of Chaos |
|
|
34 | (1) |
|
2.1.2 Geometrical Structures of Chaos |
|
|
35 | (2) |
|
|
37 | (3) |
|
2.2 Numerical Identification of Chaos |
|
|
40 | (4) |
|
|
40 | (1) |
|
|
40 | (2) |
|
|
42 | (2) |
|
|
44 | (7) |
|
|
44 | (1) |
|
2.3.2 Transversal Homoclinic/Heteroclinic Point |
|
|
44 | (3) |
|
2.3.3 Analytical Prediction |
|
|
47 | (3) |
|
|
50 | (1) |
|
2.4 Chaos in Hamiltonian Systems |
|
|
51 | (10) |
|
2.4.1 Hamiltonian Systems, Integrability and KAM Theorem |
|
|
51 | (4) |
|
2.4.2 Stochastic Layers and Global Chaos |
|
|
55 | (3) |
|
|
58 | (1) |
|
2.4.4 Higher-Dimensional Version of Melnikov Theory |
|
|
59 | (2) |
|
|
61 | (2) |
|
Chapter 3 Chaos in Planar Attitude Motion of Spacecraft |
|
|
63 | (36) |
|
3.1 Rigid Spacecraft in an Elliptic Orbit |
|
|
64 | (5) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
66 | (2) |
|
3.1.4 Numerical Simulations |
|
|
68 | (1) |
|
3.2 Tethered Satellite Systems |
|
|
69 | (6) |
|
|
69 | (1) |
|
|
70 | (3) |
|
3.2.3 Melnikov Analysis of the Uncoupled Case |
|
|
73 | (1) |
|
3.2.4 Numerical Simulations |
|
|
74 | (1) |
|
3.3 Magnetic Rigid Spacecraft in a Circular Orbit |
|
|
75 | (14) |
|
|
75 | (2) |
|
|
77 | (2) |
|
|
79 | (1) |
|
3.3.4 Numerical Investigations: Undamped Case |
|
|
80 | (3) |
|
3.3.5 Numerical Investigations: Damped Case |
|
|
83 | (6) |
|
3.4 Magnetic Rigid Spacecraft in an Elliptic Orbit |
|
|
89 | (6) |
|
|
89 | (1) |
|
|
89 | (2) |
|
|
91 | (1) |
|
3.4.4 Numerical Simulations |
|
|
92 | (3) |
|
|
95 | (4) |
|
Chapter 4 Chaos in Spatial Attitude Motion of Spacecraft |
|
|
99 | (32) |
|
4.1 Attitude Motion Described by Serret-Andoyer Variables |
|
|
100 | (8) |
|
4.1.1 Serret-Andoyer Variables |
|
|
100 | (3) |
|
4.1.2 Torque-free Rigid Body |
|
|
103 | (1) |
|
4.1.3 Torque-free Gyrostat |
|
|
104 | (2) |
|
4.1.4 Gyrostat in the Gravitational Field |
|
|
106 | (1) |
|
4.1.5 Influence of the Geomagnetic Field |
|
|
107 | (1) |
|
4.2 Rigid-body Spacecraft in an Elliptic Orbit |
|
|
108 | (5) |
|
|
108 | (1) |
|
|
109 | (2) |
|
|
111 | (2) |
|
4.2.4 Numerical Simulations |
|
|
113 | (1) |
|
4.3 Rigid-body Spacecraft with an Eccentrically Rotating Mass |
|
|
113 | (7) |
|
|
113 | (3) |
|
|
116 | (1) |
|
|
117 | (2) |
|
4.3.4 Numerical Simulations |
|
|
119 | (1) |
|
4.4 Magnetic Gyrostat Spacecraft in a Circular Orbit |
|
|
120 | (7) |
|
|
120 | (2) |
|
4.4.2 Unperturbed Motion of a Gyrostat |
|
|
122 | (1) |
|
|
123 | (2) |
|
4.4.4 Numerical Simulations |
|
|
125 | (2) |
|
|
127 | (4) |
|
Chapter 5 Control of Chaotic Attitude Motion |
|
|
131 | |
|
5.1 Control of Chaos: An Overview |
|
|
131 | (6) |
|
|
131 | (2) |
|
5.1.2 Problem Formulations |
|
|
133 | (1) |
|
5.1.3 OGY Method and Its Generalization |
|
|
134 | (2) |
|
5.1.4 Synchronization: Chaos Control in a Broader Sense |
|
|
136 | (1) |
|
5.2 The Parametric Open-plus-closed-loop Method |
|
|
137 | (8) |
|
|
137 | (1) |
|
|
138 | (2) |
|
|
140 | (4) |
|
|
144 | (1) |
|
5.3 The Stability Criterion Method |
|
|
145 | (8) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
147 | (6) |
|
5.4 Controlling Chaotic Attitude Motions |
|
|
153 | (7) |
|
|
153 | (1) |
|
5.4.2 Dynamical Model of Controlled Spacecraft |
|
|
154 | (1) |
|
5.4.3 Applications of the Parametric Open-plus-closed-loop Method |
|
|
155 | (1) |
|
5.4.4 Applications of the Stability Criterion Method |
|
|
156 | (4) |
|
|
160 | |