|
I Introducing Discrete Dynamical Systems |
|
|
1 | (74) |
|
|
3 | (6) |
|
|
3 | (1) |
|
|
4 | (1) |
|
0.3 The Character of Chaos and Fractals |
|
|
5 | (4) |
|
|
9 | (8) |
|
|
9 | (1) |
|
1.2 Functions as a Formula |
|
|
10 | (1) |
|
1.3 Functions are Deterministic |
|
|
11 | (1) |
|
|
11 | (2) |
|
|
13 | (4) |
|
|
14 | (3) |
|
|
17 | (8) |
|
2.1 The Idea of Iteration |
|
|
17 | (1) |
|
2.2 Some Vocabulary and Notation |
|
|
18 | (1) |
|
2.3 Iterated Function Notation |
|
|
19 | (1) |
|
2.4 Algebraic Expressions for Iterated Functions |
|
|
20 | (1) |
|
|
21 | (4) |
|
|
23 | (2) |
|
3 Qualitative Dynamics: The Fate of the Orbit |
|
|
25 | (8) |
|
|
25 | (1) |
|
3.2 Dynamics of the Squaring Function |
|
|
26 | (1) |
|
|
27 | (1) |
|
3.4 Fixed Points via Algebra |
|
|
27 | (2) |
|
3.5 Fixed Points Graphically |
|
|
29 | (1) |
|
3.6 Types of Fixed Points |
|
|
30 | (3) |
|
|
31 | (2) |
|
|
33 | (4) |
|
4.1 Examples of Time Series Plots |
|
|
33 | (4) |
|
|
35 | (2) |
|
|
37 | (8) |
|
|
37 | (1) |
|
5.2 The Method of Graphical Iteration |
|
|
38 | (1) |
|
|
39 | (6) |
|
|
42 | (3) |
|
6 Iterating Linear Functions |
|
|
45 | (8) |
|
|
45 | (3) |
|
|
48 | (5) |
|
|
50 | (3) |
|
|
53 | (14) |
|
|
53 | (3) |
|
7.2 Modifying the Exponential Growth Model |
|
|
56 | (3) |
|
7.3 The Logistic Equation |
|
|
59 | (3) |
|
7.4 A Note on the Importance of Stability |
|
|
62 | (2) |
|
|
64 | (3) |
|
|
65 | (2) |
|
8 Newton, Laplace, and Determinism |
|
|
67 | (8) |
|
8.1 Newton and Universal Mechanics |
|
|
67 | (2) |
|
8.2 The Enlightenment and Optimism |
|
|
69 | (1) |
|
8.3 Causality and Laplace's Demon |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
72 | (3) |
|
|
75 | (80) |
|
9 Chaos and the Logistic Equation |
|
|
77 | (12) |
|
|
77 | (5) |
|
|
82 | (3) |
|
|
85 | (1) |
|
9.4 Implications of Aperiodic Behavior |
|
|
86 | (3) |
|
|
87 | (2) |
|
|
89 | (16) |
|
10.1 Stable Periodic Behavior |
|
|
89 | (1) |
|
10.2 Sensitive Dependence on Initial Conditions |
|
|
90 | (3) |
|
|
93 | (2) |
|
|
95 | (2) |
|
10.5 Stretching and Folding: Ingredients for Chaos |
|
|
97 | (2) |
|
10.6 Chaotic Numerics: The Shadowing Lemma |
|
|
99 | (6) |
|
|
102 | (3) |
|
11 The Bifurcation Diagram |
|
|
105 | (10) |
|
11.1 A Collection of Final-State Diagrams |
|
|
105 | (5) |
|
|
110 | (1) |
|
11.3 Bifurcation Diagram Summary |
|
|
111 | (4) |
|
|
112 | (3) |
|
|
115 | (16) |
|
12.1 Bifurcation Diagrams for Other Functions |
|
|
115 | (3) |
|
12.2 Universality of Period Doubling |
|
|
118 | (3) |
|
12.3 Physical Consequences of Universality |
|
|
121 | (3) |
|
12.4 Renormalization and Universality |
|
|
124 | (4) |
|
12.5 How are Higher-Dimensional Phenomena Universal? |
|
|
128 | (3) |
|
|
129 | (2) |
|
13 Statistical Stability of Chaos |
|
|
131 | (10) |
|
13.1 Histograms of Periodic Orbits |
|
|
131 | (1) |
|
13.2 Histograms of Chaotic Orbits |
|
|
132 | (3) |
|
|
135 | (3) |
|
13.4 Predictable Unpredictability |
|
|
138 | (3) |
|
|
139 | (2) |
|
14 Determinism, Randomness, and Nonlinearity |
|
|
141 | (14) |
|
|
141 | (2) |
|
14.2 Chaotic Systems as Sources of Randomness |
|
|
143 | (1) |
|
|
144 | (4) |
|
14.4 Linearity, Nonlinearity, and Reductionism |
|
|
148 | (4) |
|
14.5 Summary and a Look Ahead |
|
|
152 | (3) |
|
|
154 | (1) |
|
|
155 | (80) |
|
|
157 | (6) |
|
|
157 | (1) |
|
|
158 | (2) |
|
|
160 | (1) |
|
15.4 Mathematical vs. Real Fractals |
|
|
161 | (2) |
|
|
162 | (1) |
|
|
163 | (10) |
|
16.1 How Many Little Things Fit inside a Big Thing? |
|
|
163 | (2) |
|
16.2 The Dimension of the Snowflake |
|
|
165 | (1) |
|
16.3 What does D 1.46497 Mean? |
|
|
166 | (1) |
|
16.4 The Dimension of the Cantor Set |
|
|
167 | (1) |
|
16.5 The Dimension of the Sierpinski Triangle |
|
|
168 | (1) |
|
16.6 Fractals, Defined Again |
|
|
169 | (4) |
|
|
170 | (3) |
|
|
173 | (14) |
|
17.1 The Random Koch Curve |
|
|
173 | (3) |
|
|
176 | (2) |
|
|
178 | (1) |
|
|
178 | (3) |
|
17.5 The Role of Randomness |
|
|
181 | (1) |
|
|
181 | (6) |
|
|
184 | (3) |
|
18 The Box-Counting Dimension |
|
|
187 | (8) |
|
18.1 Covering a Box with Little Boxes |
|
|
187 | (2) |
|
18.2 Covering a Circle with Little Boxes |
|
|
189 | (1) |
|
18.3 Estimating the Box-Counting Dimension |
|
|
190 | (3) |
|
|
193 | (2) |
|
|
193 | (2) |
|
19 When do Averages Exist? |
|
|
195 | (12) |
|
|
195 | (3) |
|
|
198 | (4) |
|
19.3 Average Winnings for the St. Petersburg Game |
|
|
202 | (1) |
|
|
203 | (4) |
|
|
204 | (3) |
|
20 Power Laws and Long Tails |
|
|
207 | (14) |
|
20.1 The Central Limit Theorem and Normal Distributions |
|
|
207 | (4) |
|
20.2 Power Laws: An Initial Example |
|
|
211 | (2) |
|
20.3 Power Laws and the Long Tail |
|
|
213 | (2) |
|
20.4 Power Laws and Fractals |
|
|
215 | (3) |
|
20.5 Where do Power Laws Come From? |
|
|
218 | (3) |
|
|
219 | (2) |
|
21 Infinities, Big and Small |
|
|
221 | (14) |
|
21.1 What is the Size of the Cantor Set? |
|
|
221 | (1) |
|
21.2 Cardinality, Counting, and the Size of Sets |
|
|
222 | (2) |
|
21.3 Countable Infinities |
|
|
224 | (1) |
|
21.4 Rational and Irrational Numbers |
|
|
225 | (1) |
|
|
225 | (2) |
|
21.6 The Cardinality of the Unit Interval |
|
|
227 | (2) |
|
21.7 The Cardinality of the Cantor Set |
|
|
229 | (3) |
|
21.8 Summary and a Look Ahead |
|
|
232 | (3) |
|
|
232 | (3) |
|
IV Julia Sets and the Mandelbrot Set |
|
|
235 | (36) |
|
22 Introducing Julia Sets |
|
|
237 | (4) |
|
22.1 The Squaring Function |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
239 | (2) |
|
|
240 | (1) |
|
|
241 | (8) |
|
23.1 The Square Root of -1 |
|
|
241 | (1) |
|
23.2 The Algebra of Complex Numbers |
|
|
242 | (1) |
|
23.3 The Geometry of Complex Numbers |
|
|
243 | (1) |
|
23.4 The Geometry of Multiplication |
|
|
244 | (5) |
|
|
246 | (3) |
|
24 Julia Sets for the Quadratic Family |
|
|
249 | (8) |
|
24.1 The Complex Squaring Function |
|
|
249 | (1) |
|
24.2 Another Example: f(z) = z2 - 1 |
|
|
250 | (2) |
|
24.3 Julia Sets for f(z) = z2 + c |
|
|
252 | (1) |
|
24.4 Computing and Coloring Julia Sets |
|
|
253 | (4) |
|
|
255 | (2) |
|
|
257 | (14) |
|
25.1 Cataloging Julia Sets |
|
|
257 | (1) |
|
25.2 The Mandelbrot Set Defined |
|
|
258 | (1) |
|
25.3 The Mandelbrot Set and the Critical Orbit |
|
|
259 | (1) |
|
25.4 Exploring the Mandelbrot Set |
|
|
260 | (3) |
|
25.5 The Mandelbrot Set is a Julia Set Encyclopedia |
|
|
263 | (5) |
|
|
268 | (3) |
|
|
269 | (2) |
|
V Higher-Dimensional Systems |
|
|
271 | (80) |
|
26 Two-Dimensional Discrete Dynamical Systems |
|
|
273 | (14) |
|
26.1 Review of One-Dimensional Discrete Dynamics |
|
|
273 | (1) |
|
26.2 Two-Dimensional Discrete Dynamical Systems |
|
|
274 | (1) |
|
|
275 | (2) |
|
26.4 Chaotic Behavior and the Henon Map |
|
|
277 | (2) |
|
|
279 | (4) |
|
26.6 Strange Attractors Defined |
|
|
283 | (4) |
|
|
285 | (2) |
|
|
287 | (16) |
|
27.1 One-Dimensional Cellular Automata: An Initial Example |
|
|
287 | (3) |
|
27.2 Surveying One-Dimensional Cellular Automata |
|
|
290 | (3) |
|
27.3 Classifying and Characterizing CA Behavior |
|
|
293 | (3) |
|
27.4 Behavior of CAs Using a Single-Cell Seed |
|
|
296 | (2) |
|
27.5 CA Naming Conventions |
|
|
298 | (2) |
|
|
300 | (3) |
|
|
302 | (1) |
|
28 Introduction to Differential Equations |
|
|
303 | (10) |
|
|
303 | (1) |
|
28.2 Instantaneous Rates of Change |
|
|
304 | (2) |
|
28.3 Approximately Solving a Differential Equation |
|
|
306 | (4) |
|
|
310 | (1) |
|
28.5 Other Solution Methods |
|
|
311 | (2) |
|
|
312 | (1) |
|
29 One-Dimensional Differential Equations |
|
|
313 | (8) |
|
29.1 The Continuous Logistic Equation |
|
|
313 | (3) |
|
|
316 | (1) |
|
29.3 Overview of One-Dimensional Differential Equations |
|
|
317 | (4) |
|
|
318 | (3) |
|
30 Two-Dimensional Differential Equations |
|
|
321 | (14) |
|
30.1 Introducing the Lotka-Volterra Model |
|
|
321 | (2) |
|
30.2 Euler's Method in Two Dimensions |
|
|
323 | (2) |
|
30.3 Analyzing the Lotka-Volterra Model |
|
|
325 | (1) |
|
30.4 Phase Space and Phase Portraits |
|
|
326 | (3) |
|
30.5 Another Example: An Attracting Fixed Point |
|
|
329 | (1) |
|
30.6 One More Example: Limit Cycles |
|
|
330 | (1) |
|
30.7 Overview of Two-Dimensional Differential Equations |
|
|
331 | (4) |
|
|
332 | (3) |
|
31 Chaotic Differential Equations and Strange Attractors |
|
|
335 | (16) |
|
31.1 The Lorenz Equations |
|
|
335 | (1) |
|
|
336 | (2) |
|
|
338 | (1) |
|
31.4 Chaos and the Lorenz Equations |
|
|
339 | (3) |
|
31.5 The Lorenz Attractor |
|
|
342 | (3) |
|
31.6 The Rossler Attractor |
|
|
345 | (2) |
|
31.7 Chaotic Flows and One-Dimensional Functions |
|
|
347 | (4) |
|
|
349 | (2) |
|
|
351 | (10) |
|
|
353 | (8) |
|
|
353 | (1) |
|
|
354 | (1) |
|
32.3 Prediction and Understanding |
|
|
355 | (1) |
|
|
355 | (2) |
|
32.5 Revolution or Reconfiguration? |
|
|
357 | (4) |
|
|
361 | (42) |
|
A Review of Selected Topics from Algebra |
|
|
363 | (14) |
|
|
363 | (3) |
|
A.2 The Quadratic Formula |
|
|
366 | (2) |
|
|
368 | (2) |
|
|
370 | (4) |
|
|
374 | (3) |
|
B Histograms and Distributions |
|
|
377 | (12) |
|
B.1 Representing Data with Histograms |
|
|
377 | (1) |
|
|
378 | (3) |
|
B.3 Normalizing Histograms |
|
|
381 | (2) |
|
B.4 Approximating Histograms with Functions |
|
|
383 | (3) |
|
|
386 | (3) |
|
C Suggestions for Further Reading |
|
|
389 | (14) |
|
|
389 | (4) |
|
|
393 | (2) |
|
C.3 Suggestions for Further Reading |
|
|
395 | (2) |
|
|
397 | (6) |
Index |
|
403 | |