Atjaunināt sīkdatņu piekrišanu

E-grāmata: Chaotic Pendulum [World Scientific e-book]

(Bar-ilan Univ, Israel)
  • Formāts: 156 pages
  • Izdošanas datums: 21-Sep-2010
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814322010
  • World Scientific e-book
  • Cena: 83,67 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formāts: 156 pages
  • Izdošanas datums: 21-Sep-2010
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814322010
Pendulum is the simplest nonlinear system, which, however, provides the means for the description of different phenomena in Nature that occur in physics, chemistry, biology, medicine, communications, economics and sociology. The chaotic behavior of pendulum is usually associated with the random force acting on a pendulum (Brownian motion). Another type of chaotic motion (deterministic chaos) occurs in nonlinear systems with only few degrees of freedom. This book presents a comprehensive description of these phenomena going on in underdamped and overdamped pendula subject to additive and multiplicative periodic and random forces. No preliminary knowledge, such as complex mathematical or numerical methods, is required from a reader other than undergraduate courses in mathematical physics. A wide group of researchers, along with students and teachers will, thus, benefit from this definitive book on nonlinear dynamics.
Preface v
List of Equations
xi
1 Pendulum Equations
1(26)
1.1 Mathematical pendulum
1(4)
1.2 Period of oscillations
5(5)
1.3 Underdamped pendulum
10(5)
1.4 Nonlinear vs linear equation
15(1)
1.5 Isomorphic models
16(4)
1.5.1 Brownian motion in a periodic potential
16(1)
1.5.2 Josephson junction
16(1)
1.5.3 Fluxon motion in superconductors
17(1)
1.5.4 Charge density waves
17(1)
1.5.5 Laser gyroscope
18(1)
1.5.6 Synchronization phenomena
18(1)
1.5.7 Parametric resonance in anisotropic systems
18(1)
1.5.8 Phase-locked loop
19(1)
1.5.9 Dynamics of adatom subject to a time-periodic force
19(1)
1.5.10 The Frenkel-Kontorova model (FK)
19(1)
1.5.11 Solitons in optical lattices
20(1)
1.5.12 Other applications
20(1)
1.6 General concepts
20(7)
1.6.1 Phase space
21(1)
1.6.2 Poincare sections and strange attractors
21(1)
1.6.3 Lyapunov exponent
22(1)
1.6.4 Correlation function
22(1)
1.6.5 Spectral analysis
22(1)
1.6.6 Period doubling and intermittency
23(4)
2 Deterministic Chaos
27(50)
2.1 Damped, periodically driven pendulum
27(14)
2.1.1 Transition to chaos
27(5)
2.1.2 Two external periodic fields
32(2)
2.1.3 Dependence on driving frequency
34(1)
2.1.4 Role of damping
35(1)
2.1.5 Symmetry and chaos
36(3)
2.1.6 Diffusion in a chaotic pendulum
39(2)
2.2 Analytic methods
41(7)
2.2.1 Period-doubling bifurcations
42(3)
2.2.2 Melnikov method
45(3)
2.3 Parametric periodic force
48(14)
2.3.1 Pendulum with vertically oscillating suspension point
49(1)
2.3.2 Transition to chaos
49(2)
2.3.3 Melnikov method
51(1)
2.3.4 Parametric periodic non-harmonic force
52(3)
2.3.5 Downward and upward equilibrium configurations
55(1)
2.3.6 Boundary between locked and running solutions
56(2)
2.3.7 Pendulum with horizontally oscillating suspension point
58(4)
2.3.8 Pendulum with both vertical and horizontal oscillations of the suspension point
62(1)
2.4 Parametrically driven pendulum
62(3)
2.5 Periodic and constant forces
65(4)
2.5.1 Melnikov method
66(3)
2.6 Parametric and constant forces
69(4)
2.6.1 Harmonic balance method
70(1)
2.6.2 Heteroclinic and homoclinic trajectories
71(1)
2.6.3 Numerical calculations
72(1)
2.7 External and parametric periodic forces
73(4)
3 Pendulum subject to a Random Force
77(36)
3.1 Noise
77(4)
3.1.1 White noise and colored noise
77(1)
3.1.2 Dichotomous noise
78(1)
3.1.3 Langevin and Fokker-Planck equations
79(2)
3.2 External random force
81(1)
3.3 Constant and random forces
82(3)
3.4 External periodic and random forces
85(4)
3.4.1 Two sources of noise
85(1)
3.4.2 Fokker-Planck equation
86(1)
3.4.3 Ratchets
86(2)
3.4.4 Absolute negative mobility
88(1)
3.5 Pendulum with multiplicative noise
89(2)
3.6 Parametric periodic and random forces
91(1)
3.7 Damped pendulum subject to a constant torque, periodic force and noise
92(1)
3.8 Overdamped pendulum
93(20)
3.8.1 Additive white noise
94(2)
3.8.2 Additive dichotomous noise
96(3)
3.8.3 Multiplicative dichotomous noise
99(3)
3.8.4 Additive and multiplicative white noise
102(7)
3.8.5 Multiplicative dichotomous noise and additive white noise
109(1)
3.8.6 Correlated additive noise and multiplicative noise
110(3)
4 Systems with Two Degrees of Freedom
113(18)
4.1 Spring pendulum
113(10)
4.1.1 Dynamic equations
114(4)
4.1.2 Chaotic behavior of a spring pendulum
118(2)
4.1.3 Driven spring pendulum
120(3)
4.2 Double pendulum
123(3)
4.3 Spherical pendulum
126(5)
5 Conclusions
131(2)
Bibliography 133(6)
Glossary 139(2)
Index 141