Preface |
|
v | |
|
|
xi | |
|
|
1 | (26) |
|
1.1 Mathematical pendulum |
|
|
1 | (4) |
|
1.2 Period of oscillations |
|
|
5 | (5) |
|
|
10 | (5) |
|
1.4 Nonlinear vs linear equation |
|
|
15 | (1) |
|
|
16 | (4) |
|
1.5.1 Brownian motion in a periodic potential |
|
|
16 | (1) |
|
|
16 | (1) |
|
1.5.3 Fluxon motion in superconductors |
|
|
17 | (1) |
|
1.5.4 Charge density waves |
|
|
17 | (1) |
|
|
18 | (1) |
|
1.5.6 Synchronization phenomena |
|
|
18 | (1) |
|
1.5.7 Parametric resonance in anisotropic systems |
|
|
18 | (1) |
|
|
19 | (1) |
|
1.5.9 Dynamics of adatom subject to a time-periodic force |
|
|
19 | (1) |
|
1.5.10 The Frenkel-Kontorova model (FK) |
|
|
19 | (1) |
|
1.5.11 Solitons in optical lattices |
|
|
20 | (1) |
|
1.5.12 Other applications |
|
|
20 | (1) |
|
|
20 | (7) |
|
|
21 | (1) |
|
1.6.2 Poincare sections and strange attractors |
|
|
21 | (1) |
|
|
22 | (1) |
|
1.6.4 Correlation function |
|
|
22 | (1) |
|
|
22 | (1) |
|
1.6.6 Period doubling and intermittency |
|
|
23 | (4) |
|
|
27 | (50) |
|
2.1 Damped, periodically driven pendulum |
|
|
27 | (14) |
|
2.1.1 Transition to chaos |
|
|
27 | (5) |
|
2.1.2 Two external periodic fields |
|
|
32 | (2) |
|
2.1.3 Dependence on driving frequency |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
36 | (3) |
|
2.1.6 Diffusion in a chaotic pendulum |
|
|
39 | (2) |
|
|
41 | (7) |
|
2.2.1 Period-doubling bifurcations |
|
|
42 | (3) |
|
|
45 | (3) |
|
2.3 Parametric periodic force |
|
|
48 | (14) |
|
2.3.1 Pendulum with vertically oscillating suspension point |
|
|
49 | (1) |
|
2.3.2 Transition to chaos |
|
|
49 | (2) |
|
|
51 | (1) |
|
2.3.4 Parametric periodic non-harmonic force |
|
|
52 | (3) |
|
2.3.5 Downward and upward equilibrium configurations |
|
|
55 | (1) |
|
2.3.6 Boundary between locked and running solutions |
|
|
56 | (2) |
|
2.3.7 Pendulum with horizontally oscillating suspension point |
|
|
58 | (4) |
|
2.3.8 Pendulum with both vertical and horizontal oscillations of the suspension point |
|
|
62 | (1) |
|
2.4 Parametrically driven pendulum |
|
|
62 | (3) |
|
2.5 Periodic and constant forces |
|
|
65 | (4) |
|
|
66 | (3) |
|
2.6 Parametric and constant forces |
|
|
69 | (4) |
|
2.6.1 Harmonic balance method |
|
|
70 | (1) |
|
2.6.2 Heteroclinic and homoclinic trajectories |
|
|
71 | (1) |
|
2.6.3 Numerical calculations |
|
|
72 | (1) |
|
2.7 External and parametric periodic forces |
|
|
73 | (4) |
|
3 Pendulum subject to a Random Force |
|
|
77 | (36) |
|
|
77 | (4) |
|
3.1.1 White noise and colored noise |
|
|
77 | (1) |
|
|
78 | (1) |
|
3.1.3 Langevin and Fokker-Planck equations |
|
|
79 | (2) |
|
3.2 External random force |
|
|
81 | (1) |
|
3.3 Constant and random forces |
|
|
82 | (3) |
|
3.4 External periodic and random forces |
|
|
85 | (4) |
|
3.4.1 Two sources of noise |
|
|
85 | (1) |
|
3.4.2 Fokker-Planck equation |
|
|
86 | (1) |
|
|
86 | (2) |
|
3.4.4 Absolute negative mobility |
|
|
88 | (1) |
|
3.5 Pendulum with multiplicative noise |
|
|
89 | (2) |
|
3.6 Parametric periodic and random forces |
|
|
91 | (1) |
|
3.7 Damped pendulum subject to a constant torque, periodic force and noise |
|
|
92 | (1) |
|
|
93 | (20) |
|
3.8.1 Additive white noise |
|
|
94 | (2) |
|
3.8.2 Additive dichotomous noise |
|
|
96 | (3) |
|
3.8.3 Multiplicative dichotomous noise |
|
|
99 | (3) |
|
3.8.4 Additive and multiplicative white noise |
|
|
102 | (7) |
|
3.8.5 Multiplicative dichotomous noise and additive white noise |
|
|
109 | (1) |
|
3.8.6 Correlated additive noise and multiplicative noise |
|
|
110 | (3) |
|
4 Systems with Two Degrees of Freedom |
|
|
113 | (18) |
|
|
113 | (10) |
|
|
114 | (4) |
|
4.1.2 Chaotic behavior of a spring pendulum |
|
|
118 | (2) |
|
4.1.3 Driven spring pendulum |
|
|
120 | (3) |
|
|
123 | (3) |
|
|
126 | (5) |
|
|
131 | (2) |
Bibliography |
|
133 | (6) |
Glossary |
|
139 | (2) |
Index |
|
141 | |