Atjaunināt sīkdatņu piekrišanu

Characterization of Partially Polarized Light Fields 2009 ed. [Hardback]

  • Formāts: Hardback, 179 pages, height x width: 235x155 mm, weight: 508 g, 60 Illustrations, black and white; XIII, 179 p. 60 illus., 1 Hardback
  • Sērija : Springer Series in Optical Sciences 147
  • Izdošanas datums: 11-Sep-2009
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642013260
  • ISBN-13: 9783642013263
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 179 pages, height x width: 235x155 mm, weight: 508 g, 60 Illustrations, black and white; XIII, 179 p. 60 illus., 1 Hardback
  • Sērija : Springer Series in Optical Sciences 147
  • Izdošanas datums: 11-Sep-2009
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642013260
  • ISBN-13: 9783642013263
Citas grāmatas par šo tēmu:
Polarization involves the vectorial nature of light fields. In current applications of optical science, the electromagnetic description of light with its vector features has been shown to be essential: In practice, optical radiation also exhibits randomness and spatial non-uniformity of the polarization state. Moreover, propagation through photonic devices can alter the correlation properties of the light field, resulting in changes in polarization. All these vectorial properties have been gaining importance in recent years, and they are attracting increasing attention in the literature. This is the framework and the scope of the present book, which includes the authors own contributions to these issues.
Representations of the Polarization of Beamlike Fields
1(36)
Introduction
1(1)
Standard Representations of the Polarization
1(9)
The Jones Calculus
2(2)
Coherence-Polarization Matrices
4(2)
The Stokes-Muller Calculus
6(2)
Local Degree of Polarization
8(2)
Weighted Degree of Polarization
10(1)
Linear and Circular Polarization Content of Totally Polarized Beams
11(5)
Key Definitions and Physical Meaning
12(1)
Application to an Example
13(2)
Measurability
15(1)
Radial and Azimuthal Polarization Content of Totally Polarized Beams
16(8)
Key Definitions
16(3)
Relations with the Stokes Parameters
19(1)
Relations with the Output of Radial and Azimuthal Polarizers
20(1)
Measurability
21(3)
Partially Polarized Gaussian Schell-Model Beams
24(8)
Gaussian Schell-Model Beams: Scalar Case
24(2)
Gaussian Schell-Model Beams: Vectorial Case
26(2)
The Van Cittert-Zernike Theorem
28(3)
Experimental Synthesis of GSM fields
31(1)
References
32(5)
Second-Order Overall Characterization of Non-uniformly Polarized Light Beams
37(56)
Introduction
37(1)
Second-Order Overall Characterization: Scalar Case
38(6)
Formalism and Key Definitions
38(5)
Propagation and Measurement of the Irradiance Moments
43(1)
Second-Order Overall Characterization: Vectorial Case
44(10)
The Wigner Matrix
44(1)
The Stokes Matrices
45(3)
Propagation Laws and Measurement
48(3)
Invariant Parameters
51(3)
Generalized Degree of Polarization
54(9)
Definition and Properties of Generalized Degree of Polarization
54(1)
Physical Meaning and Measurement
55(3)
Generalized Degree of Polarization of Beams Emerging from Optically-Pumped Nd:YAG Rods
58(4)
Classification Scheme of Partially Polarized Beams
62(1)
Beam Quality Parameter of Partially Polarized fields
63(2)
Overall Parametric Characterization of PGSM Beams
65(4)
Beam Quality Improvement: General Considerations
69(6)
Beam Quality Improvement After Propagation Through Optical Phase Devices
75(9)
Propagation Through Anisotropic Pure-Phase Plates
76(2)
Propagation of Radially and Azimuthally Polarized Beams Through Quartic Phase Plates
78(4)
Propagation Through Spiral Phase Elements
82(2)
Global Beam Shaping with Non-uniformly Polarized Beams
84(4)
References
88(5)
Polarization and Coherence of Random Electromagnetic Fields
93(34)
Introduction
93(1)
Scalar Framework
94(4)
Spectral Degree of Coherence
94(2)
Young's Interference Experiment
96(2)
Vectorial Framework: Key Definitions
98(9)
Young's Experiment Revisited
98(2)
Degrees of Coherence of Random Electromagnetic Fields
100(3)
Relation Between Degrees of Coherence of Electromagnetic Fields
103(4)
Maximum Visibility Under Unitary Transformations
107(5)
Position-Independent Stochastic Behavior of Random Electromagnetic Fields
112(6)
Mean-Square Coherent Light: Maximum Young's Fringe Visibility Through Reversible Devices
118(4)
Comparing Special Types of Random Electromagnetic Fields
122(2)
References
124(3)
Non-Paraxial Electromagnetic Beams
127(54)
Introduction
127(1)
Formalism and Key Definitions
128(8)
Angular Plane-Wave Spectrum
128(3)
Propagating and Evanescent Waves
131(1)
TE- and TM-Decomposition of the Propagating Field
131(3)
Significance of the Longitudinal Field Component
134(2)
Propagation of Non-paraxial Beams with Radial or Azimuthal Polarization Distribution at a Transverse Plane
136(15)
Radial and Azimuthal Components
136(2)
Radial Case: Free-Space Propagation
138(4)
Azimuthal Case: Free-Space Propagation
142(3)
Application to a Particular Set of Fields
145(3)
Radially-Polarized Fields at Any Transverse Plane
148(3)
Closest Field
151(14)
Definition and Meaning
151(1)
Application to the Uniformly-Polarized Gaussian Model
152(5)
Transverse Polarization Structure of the Closest Field Associated to the Gaussian Model
157(4)
Other Examples
161(4)
Evanescent Waves Associated to Highly Non-paraxial Beams
165(7)
Formalism
165(2)
Numerical Examples
167(5)
Partially Coherent Electromagnetic TE-Fields
172(5)
References
177(4)
Index 181