|
|
xiii | |
Series Preface |
|
xvii | |
|
|
xix | |
|
1 Selecting A Particle Sizer For The Pharmaceutical Industry |
|
|
1 | (26) |
|
|
|
|
|
1 | (2) |
|
1.1.1 Relevance of Particle Size in the Pharmaceutical Industry |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.1.3 Why it is So Difficult to Select a Particle Sizer |
|
|
2 | (1) |
|
1.2 Particle Size Distribution |
|
|
3 | (5) |
|
1.2.1 Equivalent Diameter |
|
|
3 | (2) |
|
1.2.2 Reporting Particle Size |
|
|
5 | (2) |
|
1.2.3 Distribution Statistics |
|
|
7 | (1) |
|
1.3 Selecting a Particle Sizer |
|
|
8 | (5) |
|
|
8 | (1) |
|
|
9 | (4) |
|
1.4 Aspects of Some Selected Methods |
|
|
13 | (9) |
|
1.4.1 Optical Microscopy-based Methods |
|
|
13 | (2) |
|
1.4.2 Laser Light-scattering Techniques |
|
|
15 | (1) |
|
1.4.2.1 Laser Diffraction and Static Light Scattering |
|
|
16 | (3) |
|
1.4.2.2 Dynamic Light Scattering |
|
|
19 | (1) |
|
1.4.3 The Time-of-Flight Counter |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (4) |
|
2 Spectroscopic Methods In Solid-State Characterization |
|
|
27 | (70) |
|
|
|
|
|
|
|
|
|
2.1 Solid-state Structure of Particulates |
|
|
27 | (1) |
|
2.2 Spectroscopy Overview |
|
|
28 | (2) |
|
2.3 Spectroscopic Data Analysis |
|
|
30 | (5) |
|
|
30 | (1) |
|
2.3.2 Statistical Analysis |
|
|
30 | (5) |
|
2.4 Infrared Spectroscopy |
|
|
35 | (5) |
|
|
35 | (2) |
|
|
37 | (3) |
|
|
40 | (1) |
|
2.5 Near-infrared Spectroscopy |
|
|
40 | (6) |
|
|
40 | (1) |
|
|
41 | (4) |
|
|
45 | (1) |
|
2.6 Terahertz Spectroscopy |
|
|
46 | (4) |
|
|
46 | (2) |
|
2.6.2 Terahertz Applications |
|
|
48 | (2) |
|
|
50 | (1) |
|
|
50 | (9) |
|
|
50 | (3) |
|
|
53 | (4) |
|
|
57 | (2) |
|
|
59 | (6) |
|
|
59 | (2) |
|
2.8.2 Nonlinear Optics Applications |
|
|
61 | (1) |
|
2.8.3 Nonlinear Optical Imaging |
|
|
61 | (4) |
|
2.9 Fluorescence Spectroscopy |
|
|
65 | (6) |
|
|
65 | (2) |
|
2.9.2 Fluorescence from Solid-state Samples |
|
|
67 | (1) |
|
2.9.3 Intrinsic Fluorophores in Solid Samples |
|
|
68 | (1) |
|
2.9.4 Fluorescence Imaging |
|
|
69 | (1) |
|
2.9.5 Fluorescence Lifetime Imaging Microscopy |
|
|
70 | (1) |
|
2.10 Solid-state Nuclear Magnetic Resonance |
|
|
71 | (11) |
|
2.10.1 The Basic Theory of NMR Spectroscopy |
|
|
71 | (1) |
|
2.10.2 Solid-state NMR Technique |
|
|
72 | (1) |
|
2.10.2.1 Dipole--Dipole Interactions |
|
|
72 | (1) |
|
2.10.2.2 Chemical Shift Anisotropy |
|
|
72 | (1) |
|
2.10.2.3 Quadrupolar Coupling |
|
|
73 | (1) |
|
2.10.2.4 Indirect Coupling |
|
|
73 | (1) |
|
2.10.2.5 Magic-angle Spinning and High-power Proton Decoupling |
|
|
73 | (2) |
|
2.10.3 Solid-state NMR Experiments |
|
|
75 | (1) |
|
2.10.3.1 Sample Preparation |
|
|
75 | (1) |
|
2.10.3.2 Cross-polarization |
|
|
76 | (1) |
|
2.10.3.3 Heteronuclear Correlation Experiments |
|
|
77 | (1) |
|
2.10.4 Pharmaceutical Applications of Solid-state NMR |
|
|
77 | (5) |
|
|
82 | (2) |
|
|
84 | (13) |
|
3 Microfluidic Analysis Techniques For Safety Assessment Of Pharmaceutical Nano- And Microsystems |
|
|
97 | (40) |
|
|
|
|
3.1 Microfluidic Bioanalytical Platforms |
|
|
97 | (1) |
|
3.2 Microfabrication Methods and Materials |
|
|
98 | (3) |
|
3.3 Microfluidic Cell Cultures |
|
|
101 | (8) |
|
3.3.1 Selection of the Microfabrication Material by Design |
|
|
102 | (2) |
|
3.3.2 Additional Design Considerations |
|
|
104 | (4) |
|
3.3.3 Characterization of Pharmaceutical Nano- and Microsystems Using Organ-on-a-chip |
|
|
108 | (1) |
|
3.4 Immobilized Enzyme Microreactors for Hepatic Safety Assessment |
|
|
109 | (11) |
|
3.4.1 Nanoparticle Impacts on the Hepatic Clearance of Xenobiotics |
|
|
109 | (3) |
|
3.4.2 Cytochrome P450 Interaction Studies in Through-flow Conditions |
|
|
112 | (1) |
|
3.4.2.1 Immobilization Strategies for Cytochrome P450 Enzymes |
|
|
113 | (3) |
|
3.4.2.2 Microfabrication Materials and Design Considerations |
|
|
116 | (4) |
|
3.5 Microfluidic Total Analysis Systems |
|
|
120 | (6) |
|
3.5.1 Microfluidic Separation Systems |
|
|
121 | (3) |
|
3.5.2 Toward n-in-one Analytical Platforms |
|
|
124 | (2) |
|
|
126 | (1) |
|
|
126 | (11) |
|
4 In Vitro---In Vivo Correlation For Pharmaceutical Nano- And Microsystems |
|
|
137 | (34) |
|
|
|
|
137 | (1) |
|
4.2 In Vitro Dissolution and In Vivo Pharmacokinetics |
|
|
138 | (5) |
|
4.3 Levels of Correlation |
|
|
143 | (2) |
|
4.3.1 Level A Correlation |
|
|
143 | (1) |
|
4.3.2 Level B Correlation |
|
|
144 | (1) |
|
4.3.3 Level C Correlation |
|
|
145 | (1) |
|
4.3.4 Multiple Level C Correlation |
|
|
145 | (1) |
|
4.3.5 Level D Correlation |
|
|
145 | (1) |
|
|
145 | (5) |
|
4.4.1 Deconvolution Model |
|
|
146 | (3) |
|
|
149 | (1) |
|
4.4.3 Miscellaneous Models |
|
|
149 | (1) |
|
4.5 IVIVC Model Validation: Predictability Evaluation |
|
|
150 | (1) |
|
4.6 IVIVC Development Step-by-Step Approach |
|
|
151 | (1) |
|
4.7 Brief Introduction to Micro/Nanosystems and IVIVC Relevance |
|
|
152 | (6) |
|
4.7.1 Selection of Appropriate Dissolution Method |
|
|
153 | (2) |
|
4.7.2 Selection of Appropriate Dissolution Medium |
|
|
155 | (2) |
|
4.7.3 Selection of Appropriate IVIVC Mathematical Model |
|
|
157 | (1) |
|
4.8 Applications of IVIVC for Micro/nanoformulations |
|
|
158 | (7) |
|
4.8.1 Formulation Optimization |
|
|
162 | (3) |
|
4.8.2 Surrogate for Bioequivalence Studies and Biowaivers |
|
|
165 | (1) |
|
4.9 Softwares Used for IVIVC |
|
|
165 | (1) |
|
4.10 Conclusion and Future Prospects |
|
|
166 | (1) |
|
|
166 | (5) |
|
5 Characterization Of Bioadhesion, Mucin-Interactions And Mucosal Permeability Of Pharmaceutical Nano- And Microsystems |
|
|
171 | (36) |
|
|
Malgorzata Iwona Adamczak |
|
|
|
|
|
171 | (1) |
|
5.2 Background and Theory |
|
|
172 | (2) |
|
|
174 | (9) |
|
|
174 | (2) |
|
5.3.2 Gastrointestinal Mucosa |
|
|
176 | (1) |
|
|
176 | (5) |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
182 | (1) |
|
5.4 Use of Mucosal Membranes in Studies of Micro- and Nanoparticles |
|
|
183 | (2) |
|
|
183 | (1) |
|
5.4.2 Permeability Support for Cell-based Systems |
|
|
184 | (1) |
|
5.5 Selection of Biological Models |
|
|
185 | (4) |
|
5.5.1 Tissue-based Models |
|
|
185 | (1) |
|
|
185 | (2) |
|
|
187 | (1) |
|
|
188 | (1) |
|
5.6 Methods for Testing Biocompatibility |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
189 | (1) |
|
5.6.3 Paracellular Permeability |
|
|
189 | (1) |
|
5.7 Methods for Testing Mucoadhesion |
|
|
190 | (5) |
|
5.7.1 Atomic Force Microscopy (AFM) |
|
|
190 | (1) |
|
5.7.2 Quartz Crystal Microbalance (QCM) |
|
|
191 | (1) |
|
|
192 | (1) |
|
5.7.4 Rheology in Combination with Light Scattering (Rheo-SALS) |
|
|
192 | (1) |
|
5.7.5 Dynamic Light Scattering (DLS) and Zeta Potential Measurements |
|
|
193 | (1) |
|
|
194 | (1) |
|
5.7.7 Mucin Adsorption Study |
|
|
194 | (1) |
|
|
194 | (1) |
|
5.8 Methods for Testing Mucopenetration |
|
|
195 | (2) |
|
5.8.1 Fluorescent Recovery after Photobleaching (FRAP) and Multiple Image Photography (MIP) |
|
|
195 | (1) |
|
5.8.2 Permeability Studies |
|
|
195 | (1) |
|
5.8.3 Water-assisted Transport Through Mucus |
|
|
196 | (1) |
|
5.8.4 Particles with Dynamic Properties |
|
|
196 | (1) |
|
5.9 Methods for Assessing Cell Interactions |
|
|
197 | (6) |
|
|
197 | (1) |
|
|
197 | (2) |
|
5.9.3 Transcellular Transport |
|
|
199 | (4) |
|
|
203 | (1) |
|
|
203 | (4) |
|
6 Cell-Nanoparticle Interactions: Toxicity And Safety Issues |
|
|
207 | (36) |
|
|
Nazanin Zanjanizadeh Ezazi |
|
|
|
|
|
207 | (4) |
|
6.1.1 Role of Nanoparticles in Modern Medicine and Applications |
|
|
207 | (1) |
|
6.1.2 Cell-NP Interactions |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
209 | (1) |
|
6.1.2.4 Surface Functionalization and Hydrophobicity |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
211 | (1) |
|
6.2 Mechanisms of NP-Induced Cellular Toxicity |
|
|
211 | (5) |
|
6.2.1 Damage to the Plasma Membrane |
|
|
211 | (1) |
|
6.2.2 Alterations or Disruptions in the Cytoskeleton |
|
|
211 | (5) |
|
6.2.3 Mitochondrial Toxicity |
|
|
216 | (1) |
|
|
216 | (1) |
|
6.2.5 Reactive Oxygen Species (ROS) |
|
|
216 | (1) |
|
6.2.6 Interference in the Signaling Pathways |
|
|
216 | (1) |
|
6.3 In Vitro Assays to Evaluate Cell-NP Interactions |
|
|
216 | (1) |
|
|
217 | (1) |
|
|
217 | (1) |
|
6.4 Metal Oxide Nanoparticles |
|
|
217 | (6) |
|
|
217 | (3) |
|
|
220 | (1) |
|
|
221 | (2) |
|
6.5 Non-metallic Nanoparticles |
|
|
223 | (12) |
|
|
223 | (1) |
|
6.5.2 Polymeric Delivery Systems |
|
|
224 | (6) |
|
|
230 | (2) |
|
6.5.4 Silicon/Silica-based Drug Delivery Systems |
|
|
232 | (3) |
|
6.6 Conclusions and Future Perspectives |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
236 | (7) |
|
7 Intestinal Mucosal Models To Validate Functionalized Nanosystems |
|
|
243 | (32) |
|
|
|
|
|
243 | (1) |
|
7.2 Intestinal Mucosal Characteristics |
|
|
244 | (4) |
|
7.2.1 Intestinal Morphology |
|
|
244 | (2) |
|
7.2.2 Transport Mechanisms |
|
|
246 | (2) |
|
|
248 | (10) |
|
|
249 | (3) |
|
|
252 | (1) |
|
7.3.2.1 The Caco-2/HT29-MTX Model |
|
|
252 | (1) |
|
7.3.2.2 The Caco-2/Raji B Model |
|
|
253 | (1) |
|
7.3.2.3 The Caco-2/HT29-MTX/Raji B Model |
|
|
253 | (1) |
|
7.3.3 3D Co-culture Models |
|
|
253 | (1) |
|
|
254 | (4) |
|
7.4 Ex Vivo Intestinal Models for In Vitro/In Vivo Correlation of Functionalized Nanosystems |
|
|
258 | (2) |
|
|
258 | (1) |
|
|
258 | (1) |
|
|
258 | (1) |
|
7.4.2 Everted Intestinal Sac Model |
|
|
259 | (1) |
|
7.4.3 Non-everted Intestinal Sac Model |
|
|
260 | (1) |
|
7.4.4 Everted Intestinal Ring |
|
|
260 | (1) |
|
|
260 | (4) |
|
7.5.1 Intestinal Perfusion |
|
|
262 | (2) |
|
|
264 | (1) |
|
7.5.3 Intestinal Vascular Cannulation |
|
|
264 | (1) |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
267 | (8) |
|
8 Biodistribution Of Polymeric, Polysaccharide And Metallic Nanoparticles |
|
|
275 | (16) |
|
|
|
|
|
|
275 | (1) |
|
8.2 Biodistribution and Pharmacokinetics |
|
|
276 | (1) |
|
8.3 Mechanisms Affecting Biodistribution |
|
|
277 | (8) |
|
8.3.1 Nanoparticle Properties |
|
|
277 | (1) |
|
8.3.1.1 Effect of Particle Size |
|
|
277 | (2) |
|
8.3.1.2 Effect of Surface Charge |
|
|
279 | (1) |
|
8.3.1.3 Effect of Particle Shape |
|
|
280 | (1) |
|
8.3.2 Dosing and Toxicity |
|
|
281 | (1) |
|
|
282 | (3) |
|
|
285 | (1) |
|
|
286 | (5) |
|
9 Opportunities And Challenges Of Silicon-Based Nanoparticles For Drug Delivery And Imaging |
|
|
291 | (48) |
|
|
|
|
|
9.1 Synthesis and Characteristics of Silica-based Nanoparticles |
|
|
292 | (11) |
|
9.1.1 Nonporous Silica NPs |
|
|
292 | (3) |
|
9.1.2 Mesoporous Silica NPs |
|
|
295 | (2) |
|
9.1.3 Core @Shell Materials |
|
|
297 | (1) |
|
9.1.4 Hollow Silica Nanoparticles |
|
|
298 | (2) |
|
9.1.5 Porous Silicon (PSi) |
|
|
300 | (3) |
|
9.2 Solid-state Characterization |
|
|
303 | (4) |
|
9.2.1 Porosity and Morphology on the Nanoscale |
|
|
303 | (2) |
|
9.2.2 Structural Analysis |
|
|
305 | (1) |
|
9.2.3 Methods for Determination of Surface Functionalization |
|
|
306 | (1) |
|
9.3 Medium-dependent Characterization |
|
|
307 | (7) |
|
|
307 | (2) |
|
9.3.1.1 Dynamic Light Scattering |
|
|
309 | (1) |
|
9.3.2 Surface Charge and Zeta Potential |
|
|
309 | (2) |
|
9.3.3 Colloidal Stability |
|
|
311 | (1) |
|
9.3.4 Challenges in Particularly Porous Nanoparticle Characterization |
|
|
312 | (2) |
|
9.4 Incorporation of Active Molecules |
|
|
314 | (5) |
|
|
314 | (3) |
|
9.4.2 Labeling with Imaging Agents |
|
|
317 | (2) |
|
9.5 Biorelevant Physicochemical Characterization |
|
|
319 | (9) |
|
9.5.1 Biodegradation/Dissolution of Silica |
|
|
321 | (2) |
|
9.5.2 Biocompatibility and Nano-Bio Interactions |
|
|
323 | (1) |
|
|
324 | (2) |
|
9.5.4 Label-free (Imaging) Technologies |
|
|
326 | (2) |
|
|
328 | (1) |
|
|
329 | (10) |
|
10 Statistical Analysis And Multidimensional Modeling In Research |
|
|
339 | (30) |
|
|
10.1 Measurement in Research |
|
|
339 | (1) |
|
10.2 Mean and Sample Mean |
|
|
339 | (2) |
|
|
341 | (2) |
|
10.4 Modeling Relationships Between Series of Observations |
|
|
343 | (1) |
|
|
344 | (6) |
|
10.5.1 The Meaning of R2 in Linear Regression |
|
|
344 | (1) |
|
|
345 | (5) |
|
|
350 | (12) |
|
|
351 | (1) |
|
10.6.2 Full Factorial Designs |
|
|
352 | (1) |
|
10.6.2.1 Full Factorial Designs in Two Levels |
|
|
352 | (3) |
|
10.6.2.2 Full Factorial Designs in Three Levels (3n Design) |
|
|
355 | (7) |
|
10.7 Principal Component Analysis (PCA) |
|
|
362 | (4) |
|
|
366 | (1) |
|
|
366 | (3) |
Index |
|
369 | |