Atjaunināt sīkdatņu piekrišanu

E-grāmata: Characterization of Pharmaceutical Nano- and Microsystems

Series edited by (University of Greenwich, UK), Edited by (University of Helsinki, Finland), Series edited by (Friedrich Schiller University of Jena, Germany), Series edited by (University of Greenwich, UK), Series edited by (Northeastern University, USA), Series edited by (University of Lille 2, France)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 181,96 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"In order to achieve proper functioning of particulate drug delivery systems, it is important to know their basic physicochemical characteristics and material properties. This book provides a comprehensive summary of analytical techniques used to characterize particulate drug systems on the micro- and nanoscale. After an introduction to the analytical tools applied to determine particle size, shape and morphology, the book describes common chemical analysis approaches as well as solid state characterization of such systems. Further sections of the book deal with drug release and permeation studies and the interaction of drug particles with cells, their toxicity and safety issues"--

Learn about the analytical tools used to characterize particulate drug delivery systems with this comprehensive overview 

Edited by a leading expert in the field, Characterization of Pharmaceutical Nano- and Microsystems provides a complete description of the analytical techniques used to characterize particulate drug systems on the micro- and nanoscale. 

The book offers readers a full understanding of the basic physicochemical characteristics, material properties and differences between micro- and nanosystems. It explains how and why greater experience and more reliable measurement techniques are required as particle size shrinks, and the measured phenomena grow weaker. 

Characterization of Pharmaceutical Nano- and Microsystems deals with a wide variety of topics relevant to chemical and solid-state analysis of drug delivery systems, including drug release, permeation, cell interaction, and safety. It is a complete resource for those interested in the development and manufacture of new medicines, the drug development process, and the translation of those drugs into life-enriching and lifesaving medicines. 

Characterization of Pharmaceutical Nano- and Microsystems covers all of the following topics: 

  • An introduction to the analytical tools applied to determine particle size, morphology, and shape 
  • Common chemical approaches to drug system characterization 
  • A description of solid-state characterization of drug systems 
  • Drug release and permeation studies 
  • Toxicity and safety issues 
  • The interaction of drug particles with cells 

Perfect for pharmaceutical chemists and engineers, as well as all other industry professionals and researchers who deal with drug delivery systems on a regular basis, Characterization of Pharmaceutical Nano- and Microsystems also belongs on bookshelves of interested students and faculty who interact with this topic.  

List of Contributors
xiii
Series Preface xvii
List of Abbreviations
xix
1 Selecting A Particle Sizer For The Pharmaceutical Industry
1(26)
Margarida Figueiredo
M. Jose Moura
Paulo J. Ferreira
1.1 Introduction
1(2)
1.1.1 Relevance of Particle Size in the Pharmaceutical Industry
1(1)
1.1.2 Main Goals
2(1)
1.1.3 Why it is So Difficult to Select a Particle Sizer
2(1)
1.2 Particle Size Distribution
3(5)
1.2.1 Equivalent Diameter
3(2)
1.2.2 Reporting Particle Size
5(2)
1.2.3 Distribution Statistics
7(1)
1.3 Selecting a Particle Sizer
8(5)
1.3.1 Classification
8(1)
1.3.2 Selection Criteria
9(4)
1.4 Aspects of Some Selected Methods
13(9)
1.4.1 Optical Microscopy-based Methods
13(2)
1.4.2 Laser Light-scattering Techniques
15(1)
1.4.2.1 Laser Diffraction and Static Light Scattering
16(3)
1.4.2.2 Dynamic Light Scattering
19(1)
1.4.3 The Time-of-Flight Counter
20(1)
1.4.4 Cascade Impactor
21(1)
1.5 Conclusions
22(1)
Acknowledgements
22(1)
References
23(4)
2 Spectroscopic Methods In Solid-State Characterization
27(70)
Clare Strachan
Jukka Saarinen
Tiina Lipiainen
Elina Vuorimaa-Laukkanen
Kaisa Rautaniemi
Timo Laaksonen
Marcin Skotnicki
Martin Dracinsky
2.1 Solid-state Structure of Particulates
27(1)
2.2 Spectroscopy Overview
28(2)
2.3 Spectroscopic Data Analysis
30(5)
2.3.1 Band Assignment
30(1)
2.3.2 Statistical Analysis
30(5)
2.4 Infrared Spectroscopy
35(5)
2.4.1 Principle
35(2)
2.4.2 MIR Applications
37(3)
2.4.3 MIR Imaging
40(1)
2.5 Near-infrared Spectroscopy
40(6)
2.5.1 Principle
40(1)
2.5.2 NIR Applications
41(4)
2.5.3 NIR Imaging
45(1)
2.6 Terahertz Spectroscopy
46(4)
2.6.1 Principle
46(2)
2.6.2 Terahertz Applications
48(2)
2.6.3 Terahertz Imaging
50(1)
2.7 Raman Spectroscopy
50(9)
2.7.1 Principle
50(3)
2.7.2 Raman Applications
53(4)
2.7.3 Raman Imaging
57(2)
2.8 Nonlinear Optics
59(6)
2.8.1 Principle
59(2)
2.8.2 Nonlinear Optics Applications
61(1)
2.8.3 Nonlinear Optical Imaging
61(4)
2.9 Fluorescence Spectroscopy
65(6)
2.9.1 Principle
65(2)
2.9.2 Fluorescence from Solid-state Samples
67(1)
2.9.3 Intrinsic Fluorophores in Solid Samples
68(1)
2.9.4 Fluorescence Imaging
69(1)
2.9.5 Fluorescence Lifetime Imaging Microscopy
70(1)
2.10 Solid-state Nuclear Magnetic Resonance
71(11)
2.10.1 The Basic Theory of NMR Spectroscopy
71(1)
2.10.2 Solid-state NMR Technique
72(1)
2.10.2.1 Dipole--Dipole Interactions
72(1)
2.10.2.2 Chemical Shift Anisotropy
72(1)
2.10.2.3 Quadrupolar Coupling
73(1)
2.10.2.4 Indirect Coupling
73(1)
2.10.2.5 Magic-angle Spinning and High-power Proton Decoupling
73(2)
2.10.3 Solid-state NMR Experiments
75(1)
2.10.3.1 Sample Preparation
75(1)
2.10.3.2 Cross-polarization
76(1)
2.10.3.3 Heteronuclear Correlation Experiments
77(1)
2.10.4 Pharmaceutical Applications of Solid-state NMR
77(5)
2.11 Conclusions
82(2)
References
84(13)
3 Microfluidic Analysis Techniques For Safety Assessment Of Pharmaceutical Nano- And Microsystems
97(40)
Tiina M. Sikanen
Liro Kiiski
Elisa Ollikainen
3.1 Microfluidic Bioanalytical Platforms
97(1)
3.2 Microfabrication Methods and Materials
98(3)
3.3 Microfluidic Cell Cultures
101(8)
3.3.1 Selection of the Microfabrication Material by Design
102(2)
3.3.2 Additional Design Considerations
104(4)
3.3.3 Characterization of Pharmaceutical Nano- and Microsystems Using Organ-on-a-chip
108(1)
3.4 Immobilized Enzyme Microreactors for Hepatic Safety Assessment
109(11)
3.4.1 Nanoparticle Impacts on the Hepatic Clearance of Xenobiotics
109(3)
3.4.2 Cytochrome P450 Interaction Studies in Through-flow Conditions
112(1)
3.4.2.1 Immobilization Strategies for Cytochrome P450 Enzymes
113(3)
3.4.2.2 Microfabrication Materials and Design Considerations
116(4)
3.5 Microfluidic Total Analysis Systems
120(6)
3.5.1 Microfluidic Separation Systems
121(3)
3.5.2 Toward n-in-one Analytical Platforms
124(2)
3.6 Epilogue
126(1)
References
126(11)
4 In Vitro---In Vivo Correlation For Pharmaceutical Nano- And Microsystems
137(34)
Preshita P. Desai
Vandana B. Patravale
4.1 Introduction
137(1)
4.2 In Vitro Dissolution and In Vivo Pharmacokinetics
138(5)
4.3 Levels of Correlation
143(2)
4.3.1 Level A Correlation
143(1)
4.3.2 Level B Correlation
144(1)
4.3.3 Level C Correlation
145(1)
4.3.4 Multiple Level C Correlation
145(1)
4.3.5 Level D Correlation
145(1)
4.4 Models of IVIVC
145(5)
4.4.1 Deconvolution Model
146(3)
4.4.2 Convolution Model
149(1)
4.4.3 Miscellaneous Models
149(1)
4.5 IVIVC Model Validation: Predictability Evaluation
150(1)
4.6 IVIVC Development Step-by-Step Approach
151(1)
4.7 Brief Introduction to Micro/Nanosystems and IVIVC Relevance
152(6)
4.7.1 Selection of Appropriate Dissolution Method
153(2)
4.7.2 Selection of Appropriate Dissolution Medium
155(2)
4.7.3 Selection of Appropriate IVIVC Mathematical Model
157(1)
4.8 Applications of IVIVC for Micro/nanoformulations
158(7)
4.8.1 Formulation Optimization
162(3)
4.8.2 Surrogate for Bioequivalence Studies and Biowaivers
165(1)
4.9 Softwares Used for IVIVC
165(1)
4.10 Conclusion and Future Prospects
166(1)
References
166(5)
5 Characterization Of Bioadhesion, Mucin-Interactions And Mucosal Permeability Of Pharmaceutical Nano- And Microsystems
171(36)
Ellen Hagesaether
Malgorzata Iwona Adamczak
Marianne Worth
Ingunn Tho
5.1 Introduction
171(1)
5.2 Background and Theory
172(2)
5.3 Mucosal Membranes
174(9)
5.3.1 Oral Mucosa
174(2)
5.3.2 Gastrointestinal Mucosa
176(1)
5.3.3 Pulmonary Mucosa
176(5)
5.3.4 Nasal Mucosa
181(1)
5.3.5 Ocular Mucosa
182(1)
5.3.6 Vaginal Mucosa
182(1)
5.4 Use of Mucosal Membranes in Studies of Micro- and Nanoparticles
183(2)
5.4.1 Diffusion Chambers
183(1)
5.4.2 Permeability Support for Cell-based Systems
184(1)
5.5 Selection of Biological Models
185(4)
5.5.1 Tissue-based Models
185(1)
5.5.2 Cell-based Models
185(2)
5.5.3 Mucus as Models
187(1)
5.5.4 Artificial Models
188(1)
5.6 Methods for Testing Biocompatibility
189(1)
5.6.1 Viability
189(1)
5.6.2 Cytotoxicity
189(1)
5.6.3 Paracellular Permeability
189(1)
5.7 Methods for Testing Mucoadhesion
190(5)
5.7.1 Atomic Force Microscopy (AFM)
190(1)
5.7.2 Quartz Crystal Microbalance (QCM)
191(1)
5.7.3 Rheology
192(1)
5.7.4 Rheology in Combination with Light Scattering (Rheo-SALS)
192(1)
5.7.5 Dynamic Light Scattering (DLS) and Zeta Potential Measurements
193(1)
5.7.6 Mechanical Methods
194(1)
5.7.7 Mucin Adsorption Study
194(1)
5.7.8 Wash-off Tests
194(1)
5.8 Methods for Testing Mucopenetration
195(2)
5.8.1 Fluorescent Recovery after Photobleaching (FRAP) and Multiple Image Photography (MIP)
195(1)
5.8.2 Permeability Studies
195(1)
5.8.3 Water-assisted Transport Through Mucus
196(1)
5.8.4 Particles with Dynamic Properties
196(1)
5.9 Methods for Assessing Cell Interactions
197(6)
5.9.1 Cell Adhesion
197(1)
5.9.2 Cellular Uptake
197(2)
5.9.3 Transcellular Transport
199(4)
5.10 Concluding Remarks
203(1)
References
203(4)
6 Cell-Nanoparticle Interactions: Toxicity And Safety Issues
207(36)
Flavia Fontana
Nazanin Zanjanizadeh Ezazi
Nayab Tahir
Helder A. Santos
6.1 Introduction
207(4)
6.1.1 Role of Nanoparticles in Modern Medicine and Applications
207(1)
6.1.2 Cell-NP Interactions
208(1)
6.1.2.1 Size
208(1)
6.1.2.2 Shape
208(1)
6.1.2.3 Surface Charge
209(1)
6.1.2.4 Surface Functionalization and Hydrophobicity
210(1)
6.1.2.5 Protein Corona
211(1)
6.1.3 NP Toxicity
211(1)
6.2 Mechanisms of NP-Induced Cellular Toxicity
211(5)
6.2.1 Damage to the Plasma Membrane
211(1)
6.2.2 Alterations or Disruptions in the Cytoskeleton
211(5)
6.2.3 Mitochondrial Toxicity
216(1)
6.2.4 Nuclear Damage
216(1)
6.2.5 Reactive Oxygen Species (ROS)
216(1)
6.2.6 Interference in the Signaling Pathways
216(1)
6.3 In Vitro Assays to Evaluate Cell-NP Interactions
216(1)
6.3.1 Traditional Assays
217(1)
6.3.2 Innovative Assays
217(1)
6.4 Metal Oxide Nanoparticles
217(6)
6.4.1 Zinc Oxide
217(3)
6.4.2 Cerium Oxide
220(1)
6.4.3 Iron Oxide
221(2)
6.5 Non-metallic Nanoparticles
223(12)
6.5.1 Liposomes
223(1)
6.5.2 Polymeric Delivery Systems
224(6)
6.5.3 Dendrimers
230(2)
6.5.4 Silicon/Silica-based Drug Delivery Systems
232(3)
6.6 Conclusions and Future Perspectives
235(1)
Acknowledgements
235(1)
References
236(7)
7 Intestinal Mucosal Models To Validate Functionalized Nanosystems
243(32)
Claudia Azevedo
Ines Pereira
Bruno Sarmento
7.1 Introduction
243(1)
7.2 Intestinal Mucosal Characteristics
244(4)
7.2.1 Intestinal Morphology
244(2)
7.2.2 Transport Mechanisms
246(2)
7.3 In Vitro Models
248(10)
7.3.1 Monoculture Models
249(3)
7.3.2 Co-culture Models
252(1)
7.3.2.1 The Caco-2/HT29-MTX Model
252(1)
7.3.2.2 The Caco-2/Raji B Model
253(1)
7.3.2.3 The Caco-2/HT29-MTX/Raji B Model
253(1)
7.3.3 3D Co-culture Models
253(1)
7.3.4 Gut-on-a-Chip
254(4)
7.4 Ex Vivo Intestinal Models for In Vitro/In Vivo Correlation of Functionalized Nanosystems
258(2)
7.4.1 Diffusion Chambers
258(1)
7.4.1.1 Ussing Chamber
258(1)
7.4.1.2 Franz Cell
258(1)
7.4.2 Everted Intestinal Sac Model
259(1)
7.4.3 Non-everted Intestinal Sac Model
260(1)
7.4.4 Everted Intestinal Ring
260(1)
7.5 In Situ Models
260(4)
7.5.1 Intestinal Perfusion
262(2)
7.5.2 Intestinal Loop
264(1)
7.5.3 Intestinal Vascular Cannulation
264(1)
7.6 In Vivo Models
264(1)
7.7 Conclusion
265(1)
Acknowledgements
266(1)
References
267(8)
8 Biodistribution Of Polymeric, Polysaccharide And Metallic Nanoparticles
275(16)
Nazli Erdogar
Gamze Varan
Cent Varan
Erem Bilensoy
8.1 Introduction
275(1)
8.2 Biodistribution and Pharmacokinetics
276(1)
8.3 Mechanisms Affecting Biodistribution
277(8)
8.3.1 Nanoparticle Properties
277(1)
8.3.1.1 Effect of Particle Size
277(2)
8.3.1.2 Effect of Surface Charge
279(1)
8.3.1.3 Effect of Particle Shape
280(1)
8.3.2 Dosing and Toxicity
281(1)
8.3.3 Effect of Coating
282(3)
8.4 Conclusion
285(1)
References
286(5)
9 Opportunities And Challenges Of Silicon-Based Nanoparticles For Drug Delivery And Imaging
291(48)
Didem Sen Karaman
Martti Kaasalainen
Helene Kettiger
Jessica M. Rosenholm
9.1 Synthesis and Characteristics of Silica-based Nanoparticles
292(11)
9.1.1 Nonporous Silica NPs
292(3)
9.1.2 Mesoporous Silica NPs
295(2)
9.1.3 Core @Shell Materials
297(1)
9.1.4 Hollow Silica Nanoparticles
298(2)
9.1.5 Porous Silicon (PSi)
300(3)
9.2 Solid-state Characterization
303(4)
9.2.1 Porosity and Morphology on the Nanoscale
303(2)
9.2.2 Structural Analysis
305(1)
9.2.3 Methods for Determination of Surface Functionalization
306(1)
9.3 Medium-dependent Characterization
307(7)
9.3.1 Hydrodynamic Size
307(2)
9.3.1.1 Dynamic Light Scattering
309(1)
9.3.2 Surface Charge and Zeta Potential
309(2)
9.3.3 Colloidal Stability
311(1)
9.3.4 Challenges in Particularly Porous Nanoparticle Characterization
312(2)
9.4 Incorporation of Active Molecules
314(5)
9.4.1 Drug Loading
314(3)
9.4.2 Labeling with Imaging Agents
317(2)
9.5 Biorelevant Physicochemical Characterization
319(9)
9.5.1 Biodegradation/Dissolution of Silica
321(2)
9.5.2 Biocompatibility and Nano-Bio Interactions
323(1)
9.5.3 Drug Release
324(2)
9.5.4 Label-free (Imaging) Technologies
326(2)
9.6 Conclusions
328(1)
References
329(10)
10 Statistical Analysis And Multidimensional Modeling In Research
339(30)
Osmo Antikainen
10.1 Measurement in Research
339(1)
10.2 Mean and Sample Mean
339(2)
10.3 Correlation
341(2)
10.4 Modeling Relationships Between Series of Observations
343(1)
10.5 Quality of a Model
344(6)
10.5.1 The Meaning of R2 in Linear Regression
344(1)
10.5.2 Cross-validation
345(5)
10.6 Multivariate Data
350(12)
10.6.1 Screening Designs
351(1)
10.6.2 Full Factorial Designs
352(1)
10.6.2.1 Full Factorial Designs in Two Levels
352(3)
10.6.2.2 Full Factorial Designs in Three Levels (3n Design)
355(7)
10.7 Principal Component Analysis (PCA)
362(4)
10.8 Conclusions
366(1)
References
366(3)
Index 369
Leena Peltonen is Adjunct Professor in the Division of Pharmaceutical Chemistry and Technology at the University of Helsinki, Finland. She holds two master's degrees, as well as a PhD in Pharmacy that she obtained in 2001.