Atjaunināt sīkdatņu piekrišanu

E-grāmata: Characterizing Stellar and Exoplanetary Environments

Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In this book an international group of specialists discusses studies of exoplanets subjected to extreme stellar radiation and plasma conditions. It is shown that such studies will help us to understand how terrestrial planets and their atmospheres, including the early Venus, Earth and Mars, evolved during the host star’s active early phase. The book presents an analysis of findings from Hubble Space Telescope observations of transiting exoplanets, as well as applications of advanced numerical models for characterizing the upper atmosphere structure and stellar environments of exoplanets. The authors also address detections of atoms and molecules in the atmosphere of “hot Jupiters” by NASA’s Spitzer telescope. The observational and theoretical investigations and discoveries presented are both timely and important in the context of the next generation of space telescopes.

The book is divided into four main parts, grouping chapters on exoplanet host star radiation and plasma environments, exoplanet upper atmosphere and environment observations, exoplanet and stellar magnetospheres, and exoplanet observation and characterization. The book closes with an outlook on the future of this research field.

Part I Exoplanet Host Star Radiation and Plasma Environment
1 Exoplanet Host Star Radiation and Plasma Environment
3(16)
Jeffrey L. Linsky
Manuel Gudel
1.1 Introduction: Relevance of Short Wavelength Radiation to Planetary Atmospheres
3(2)
1.2 UV Radiation
5(4)
1.3 EUV Radiation
9(3)
1.4 X-Radiation
12(7)
Conclusions
16(1)
References
16(3)
2 Stellar Winds in Time
19(18)
Brian E. Wood
Jeffrey L. Linsky
Manuel Gudel
2.1 Introduction: The Wind-Corona Connection
19(2)
2.2 Observational Constraints on Stellar Winds
21(9)
2.2.1 Upper Limits from Direct Detection Techniques
21(1)
2.2.2 Stellar Wind Measurements from Astrospheric Absorption
22(6)
2.2.3 T Tauri Star Winds
28(2)
2.3 Expectations from Theoretical Models
30(7)
Conclusion
31(1)
References
32(5)
3 Magnetic Fields and Winds of Planet Hosting Stars
37(22)
Theresa Luftinger
Aline A. Vidotto
Colin P. Johnstone
3.1 Introduction: Stellar Magnetic Fields
37(1)
3.2 Analyzing Stellar Magnetic Fields: Techniques
38(2)
3.2.1 Zeeman Broadening and Spectropolarimetry
38(1)
3.2.2 Zeeman Doppler Imaging
39(1)
3.3 Rotation and Magnetism in Low Mass Main-Sequence Stars
40(3)
3.3.1 The Sun
40(1)
3.3.2 Solar Type Stars
41(1)
3.3.3 M Dwarfs
42(1)
3.3.4 Rotation and Magnetism
42(1)
3.4 Low Mass Pre-Main-Sequence Stars
43(3)
3.5 Winds Launched by Stellar Magnetic Fields
46(13)
3.5.1 Stellar Magnetic Fields and Activity
46(2)
3.5.2 Winds
48(3)
Conclusion
51(1)
References
52(7)
Part II Exoplanet Upper Atmospheres and Stellar Interaction: Observations and Modelling
4 Observations of Exoplanet Atmospheres and Surrounding Environments
59(22)
Luca Fossati
Carole A. Haswell
Jeffrey L. Linsky
Krishna G. Kislyakova
4.1 Introduction: Exoplanet Atmospheres
59(2)
4.2 The Deepest Observed Layers of Hot Jupiter Atmospheres
61(2)
4.2.1 Heat Transport in the Thermosphere
61(1)
4.2.2 The Dayside Emitted Spectrum
61(1)
4.2.3 Clouds, Hazes and Aurorae
62(1)
4.2.4 Alkali Metal Features
62(1)
4.2.5 Balmer Lines
63(1)
4.3 Transmission Spectroscopy of Hot Jupiter Exospheres
63(8)
4.3.1 Far-UV Observations
63(6)
4.3.2 Near-UV Observations
69(2)
4.3.3 Early Ingresses
71(1)
4.3.4 X-Ray Observations of the Transit of HD 189733 b
71(1)
4.4 WASP-12: An Enshrouded Planetary System
71(2)
4.5 Star-Planet Interactions
73(8)
Conclusion
74(2)
References
76(5)
5 Types of Hot Jupiter Atmospheres
81(24)
Dmitry V. Bisikalo
Pavel V. Kaygorodov
Dmitry E. Ionov
Valery I. Shematovich
5.1 Introduction: Exoplanet Gaseous Envelopes
81(1)
5.2 Outflow of the Hot Jupiter Atmosphere Caused by the Gravity of the Host Star
82(4)
5.3 Interaction of Hot Jupiter Atmospheres with Stellar Winds
86(4)
5.4 Classification of Hot Jupiter Envelopes
90(5)
5.5 Shapes of Hot Jupiter Atmospheres as Obtained from 3D Numerical Simulations
95(10)
Conclusion
101(2)
References
103(2)
6 Suprathermal Particles in XUV-Heated and Extended Exoplanetary Upper Atmospheres
105(32)
Valery I. Shematovich
Dmitry V. Bisikalo
Dmitry E. Ionov
6.1 Introduction: Short-Wavelength Radiation Effects in Upper Atmospheres
106(1)
6.2 Aeronomy of Suprathermal Atoms in Planetary Upper Atmospheres
106(8)
6.2.1 Hot Planetary Coronae
107(1)
6.2.2 Suprathermal Neutral Particles
108(1)
6.2.3 Kinetic Description of Suprathermal Particles
109(2)
6.2.4 The Stochastic Kinetic Equation for Suprathermal Particles
111(1)
6.2.5 The Analogue Monte Carlo Method of Solving the Stochastic Kinetic Equation
112(1)
6.2.6 Current Progress on Hot Atom Corona Modeling
113(1)
6.3 Suprathermals in the Extended Atmosphere of the Hot Jupiter HD 209458b
114(3)
6.4 Heating Efficiency in Hydrogen-Dominated Upper Exoplanet Atmospheres
117(8)
6.4.1 Photolytic and Electron-Impact Processes in the Upper Atmosphere
117(3)
6.4.2 Kinetic Equation
120(1)
6.4.3 Numerical Model
120(1)
6.4.4 Energy Deposition of the Stellar Soft X-Ray and EUV Radiation
121(1)
6.4.5 Calculations of Heating Efficiency Height Distribution
122(3)
6.5 Suprathermal Fraction of Atomic Hydrogen
125(12)
6.5.1 Molecular Hydrogen Dissociation in the Upper Atmosphere of HD 20945 8b
125(2)
6.5.2 Kinetics of Suprathermal Hydrogen Atoms
127(2)
6.5.3 Calculation Results
129(3)
Conclusion
132(1)
References
133(4)
7 Stellar Driven Evolution of Hydrogen-Dominated Atmospheres from Earth-Like to Super-Earth-Type Exoplanets
137(16)
Kristina G. Kislyakova
Mats Holmstrom
Helmut Lammer
Nikolai V. Erkaev
7.1 Introduction: Hydrogen-Rich Terrestrial Exoplanets
138(2)
7.2 Thermal Escape
140(5)
7.3 Ion Pick-Up
145(8)
Conclusion
148(2)
References
150(3)
8 Interpretations of WASP-12b Near-UV Observations
153(16)
Aline A. Vidotto
Dmitry V. Bisikalo
Luca Fossati
Joe Llama
8.1 Introduction: WASP-12b an Evaporating Hot Jupiter
153(3)
8.1.1 The Bow Shock Model
155(1)
8.2 The Bow Shock Surrounding the Planet's Magnetic Obstacle
156(4)
8.2.1 Radiation Transfer Simulations of the Near-UV Transit
158(2)
8.2.2 Transit Variability
160(1)
8.3 Gas Dynamic Simulation of the Interaction Between WASP-12b and Its Host Star
160(9)
8.3.1 Model Description
161(3)
8.3.2 The Flow Structure Around the Planet
164(1)
8.3.3 Early Ingress in Pure Gas Dynamic Model
165(1)
Conclusion
166(1)
References
167(2)
9 The Effects of Close-in Exoplanets on Their Host Stars
169(20)
Eike W. Guenther
Stephan Geier
9.1 Introduction: Stellar Activity Triggered by Hot Jupiters
169(2)
9.2 Enhanced Chromospheric Activity and Spot Coverage Caused by Close-in Planets
171(6)
9.2.1 The Call Lines
171(1)
9.2.2 The UV-Radiation from the Chromosphere
172(1)
9.2.3 The Corona and the Stellar Wind
173(1)
9.2.4 Magnetic Fields in the Photosphere and Stellar Spots
174(1)
9.2.5 Flares
175(2)
9.2.6 The Solar System
177(1)
9.3 Bow Shocks
177(1)
9.4 Can Planets Affect Stellar Rotation?
178(1)
9.5 The Engulfment of Planets
179(10)
Conclusion
182(1)
References
182(7)
Part III Exoplanet and Astrophysical Magnetic Fields
10 Magnetosphere Environment from Solar System Planets/Moons to Exoplanets
189(24)
Igor I. Alexeev
Maria S. Grygoryan
Elena S. Belenkaya
Vladimir V. Kalegaev
Maxim Khodachenko
10.1 Introduction: Magnetospheres
190(1)
10.2 Magnetospheres of the Earth, Jupiter, and Saturn
190(13)
10.2.1 Paraboloid Magnetosphere Model: General Issues
191(5)
10.2.2 Paraboloid Model of Mercury's Magnetosphere
196(3)
10.2.3 Jupiter's Magnetosphere
199(4)
10.3 Paraboloid Model Application to Hot Jupiter Magnetospheres
203(10)
10.3.1 Magnetodisks Are Key Elements of Hot Jupiter Magnetospheres
203(4)
Conclusion
207(4)
References
211(2)
11 Detection Methods and Relevance of Exoplanetary Magnetic Fields
213(26)
Jean-Mathias Griebmeier
11.1 Introduction: Planetary Magnetic Fields
213(1)
11.2 Effects of Magnetic Fields on Gas Giants
214(11)
11.2.1 Gas Giants: Superflares
214(1)
11.2.2 Gas Giants: Planetary migration
215(1)
11.2.3 Gas Giants: H+3 Emission
216(1)
11.2.4 Gas Giants: Planetary Mass Loss
217(1)
11.2.5 Gas Giants: Chromospheric Emission
218(1)
11.2.6 Gas Giants: Early Transit Ingress and Bow Shock Modelling
219(2)
11.2.7 Gas Giants: Transit Profile and Ly-α Absorption Modelling
221(1)
11.2.8 Gas Giants: Radio Emission
221(4)
11.3 Effects of Magnetic Fields on Terrestrial Planets
225(14)
11.3.1 Terrestrial Planets: Atmospheric Escape
226(2)
11.3.2 Terrestrial Planets: Protection Against Cosmic Rays
228(3)
11.3.3 Terrestrial Planets: Comet-Like Exosphere
231(1)
Conclusion
231(1)
References
232(7)
12 Alfven Radius: A Key Parameter for Astrophysical Magnetospheres
239(14)
Elena S. Belenkaya
Maxim L. Khodachenko
Igor I. Alexeev
12.1 Introduction: Alfven Radius and Astrophysical Magnetic Environments
239(1)
12.2 "Non-local Alfven Radius" in Magnetized Planetary Magnetospheres
240(4)
12.3 Alfven Radius in the Magnetized Planet Magnetospheres Including Disks
244(1)
12.4 Alfven Radius in the Magnetospheres of Magnetized Stars
245(1)
12.5 Alfven Radius in the Magnetospheres of Compact Objects in the Presence of a Strong Magnetic Field
245(8)
Conclusion
247(1)
References
248(5)
Part IV Space and Ground-Based Exoplanet Observation and Characterization Tools
13 Living with Stars: Future Space-Based Exoplanet Search and Characterization Missions
253(22)
Malcolm Fridlund
Heike Rauer
Anders Erikson
13.1 Introduction and Background
253(7)
13.1.1 What Do We Currently Know About the Physics of Exoplanets?
255(5)
13.2 Current and Near Future Observations from Space
260(7)
13.2.1 The Hubble Space Telescope
261(1)
13.2.2 CoRoT: The First Dedicated Space Mission Related to Exoplanets
262(1)
13.2.3 Kepler
263(1)
13.2.4 Gaia: Bulk Observations
264(1)
13.2.5 The Immediate Future: TESS, CHEOPS and the James Webb Space Telescope
265(2)
13.3 The Next Step (ESA): PLATO 2.0
267(2)
13.4 The Next Step (NASA): WFIRST, Coronographs and Occulters
269(1)
13.5 Further Future: Darwin, TPF and New World Observatories
270(5)
Conclusion
271(1)
References
272(3)
14 The World Space Observatory-UV Project as a Tool for Exoplanet Science
275(14)
Boris M. Shustov
Mikhail E. Sachkov
Dmitry V. Bisikalo
Ana-Ines Gomez de Castro
14.1 Introduction: UV Exoplanet Astronomy After HST
276(1)
14.2 The WSO--UV Mission
276(2)
14.3 WUVS: WSO--UV Spectrographs
278(1)
14.4 Comparison of WSO--UV and HST Spectrograph Efficiency
278(2)
14.5 ISSIS: Imaging and Slitless Spectroscopy Instrument for Surveys
280(2)
14.6 WSO--UV Orbit
282(1)
14.7 WSO--UV Science Management Plan
283(1)
14.8 WSO--UV Status 2014
284(1)
14.9 WSO--UV Ground Segment
285(4)
Conclusion
285(2)
References
287(2)
15 Ground-Based Exoplanet Projects
289(18)
Eike W. Guenther
15.1 Introduction: Ground-Based Exoplanet Research
289(1)
15.2 Radial Velocity Measurements
290(9)
15.2.1 The Absorption Cell Method
291(1)
15.2.2 The Emission-Line Method
292(4)
15.2.3 Photometric Observations of Transits
296(2)
15.2.4 Spectroscopic Observations of Transits
298(1)
15.3 Direct Imaging and Interferometry
299(3)
15.4 Astrometry, Polarization, Microlensing
302(5)
Conclusion
302(1)
References
303(4)
Index 307
Helmut Lammer is an internationally recognised specialist in planetary atmosphere formation and planetary habitability. He and Maxim Khodachenko are researchers at the Space Research Institute of the Austrian Academy of Sciences.