Atjaunināt sīkdatņu piekrišanu

E-grāmata: Chasles and the Projective Geometry: The Birth of a Global Foundational Programme for Mathematics, Mechanics and Philosophy

  • Formāts: EPUB+DRM
  • Izdošanas datums: 17-Jul-2024
  • Izdevniecība: Birkhauser Verlag AG
  • Valoda: eng
  • ISBN-13: 9783031542664
  • Formāts - EPUB+DRM
  • Cena: 178,44 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 17-Jul-2024
  • Izdevniecība: Birkhauser Verlag AG
  • Valoda: eng
  • ISBN-13: 9783031542664

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This monograph meticulously examines the contributions of French mathematician Michel Chasles to 19th-century geometry. Through an in-depth analysis of Chasles' extensive body of work, the author examines six pivotal arguments which collectively reshape the foundations of geometry. Chasles introduces a novel form of polarity, termed "parabolic," to the graphic context, so expressing the metric properties by means of this specific polarity—a foundational argument. Beyond the celebrated "Chasles theorem," he extends his analysis to the movement of a rigid body, employing concepts derived from projective geometry. This approach is consistently applied across diverse domains. Chasles employs the same methodology to analyze systems of forces. The fourth argument examined by the author concerns the principle of virtual velocities, which can also be addressed through a geometric analysis. In the fifth chapter, Chasles' philosophy of duality is explained. It is grounded on the duality principles of projective geometry. Finally, the author presents Chasles’ synthetic solution for the intricate problem of ellipsoid attraction—the sixth and concluding chapter. Throughout these explorations, Chasles engages in a dynamic scientific dialogue with leading physicists and mathematicians of his era, revealing diverse perspectives and nuances inherent in these discussions.

Tailored for historians specializing in mathematics and geometry, this monograph also beckons philosophers of mathematics and science, offering profound insights into the philosophical, epistemological, and methodological dimensions of Chasles' groundbreaking contributions. Providing a comprehensive understanding of Chasles' distinctive perspective on 19th-century geometry, this work stands as a valuable resource for scholars and enthusiasts alike.
Introduction.- Chasles foundational programme for geometry.-
Displacement of a rigid body.- Chasles and the systems of forces.- The
principle of virtual velocities.- Chasles philosophy of duality.- Chasles
and the ellipsoid attraction.- Conclusion.
Paolo Bussotti is Associate Professor in History of Science and Techniques at the University of Udine (Italy). His research areas are history of science and mathematics, in particular history of geometry and number theory between the 17th and the 19th centuries, and history of physics and astronomy in the 17th century. He is the author of more than 150 scientific publications, among which a monograph on the history of the method of infinite descent (number theory), From Fermat to Gauss. Indefinite descent and methods of reduction in Number Theory (2006), one on Leibnizs planetary theory, The complex itinerary of Leibnizs planetary theory (Birkhäuser, 2015) and one, written jointly with Prof. Brunello Lotti, titled Cosmology in the Early Modern Age. A Web of Ideas (Springer, 2022). He is the co-author (jointly with prof. R. Pisano) of many papers on the Geneva Edition of Newtons Principia published in important journals dedicated to the history of science. Furthermore, he is reviewer for leading scientific journals and well-known reviewing services such as Zentralblatt für Mathematik.