Atjaunināt sīkdatņu piekrišanu

E-grāmata: Chemical Modelling: Applications and Theory Volume 4

Edited by , Contributions by (Universite Libre de), Contributions by , Contributions by (Novartis Pharma AG, Switzerland), Contributions by (University of Saarland, Germany), Contributions by (The Rudjer Boskovic Institute, Croatia), Contributions by (University of Strathclyde, UK), Contributions by (University of Sheffield, UK), Contributions by , Contributions by (University of Peloponnese, Greece)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 955,48 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Chemical Modelling: Applications and Theory comprises critical literature reviews of molecular modelling, both theoretical and applied. Molecular modelling in this context refers to modelling the structure, properties and reactions of atoms, molecules & materials. Each chapter is compiled by experts in their fields and provides a selective review of recent literature. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves of major developments in the area. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis. Current subject areas covered are Amino Acids, Peptides and Proteins, Carbohydrate Chemistry, Catalysis, Chemical Modelling. Applications and Theory, Electron Paramagnetic Resonance, Nuclear Magnetic Resonance, Organometallic Chemistry. Organophosphorus Chemistry, Photochemistry and Spectroscopic Properties of Inorganic and Organometallic Compounds. From time to time, the series has altered according to the fluctuating degrees of activity in the various fields, but these volumes remain a superb reference point for researchers.


Reflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.
Computer-Aided Drug Design 2003--2005
1(22)
Bernard Coupez
Henrik Mobitz
Richard A. Lewis
1 Introduction
1(1)
2 ADME/Tox and Druggability
1(3)
2.1 Druggability and Bioavailability
1(1)
2.2 Metabolism, Inhibitors and Substrates
2(2)
2.3 Toxicity
4(1)
3 Docking and Scoring
4(6)
3.1 Ligand Database Preparation
4(1)
3.2 Target Preparation
5(1)
3.3 Water Molecules
6(1)
3.4 Comparison of Docking Methods
6(1)
3.5 Scoring
7(1)
3.6 New Methods
8(1)
3.7 Application of Virtual Screening
9(1)
4 De Novo, Inverse QSAR and Automated Iterative Design
10(1)
5 3D-QSAR
11(1)
6 Pharmacophores
11(1)
7 Library Design
12(1)
8 Cheminformatics and Data Mining
13(2)
8.1 Scaffold Hopping
13(1)
8.2 Descriptors and Atom Typing
14(1)
8.3 Tools
15(1)
9 Structure-Based Drug Design
15(3)
9.1 Analysis of Active Sites and Target Tracability
15(1)
9.2 Kinase Modelling
16(1)
9.3 GPCR Modelling
16(2)
10 Conclusions
18(5)
References
18(5)
Modelling Biological Systems
23(46)
Adrian J. Mulholland
1 Introduction
23(1)
2 Empirical Forcefields for Biomolecular Simulation: Molecular Mechanics (MM) Methods
24(5)
3 Combined Quantum Mechanics/Molecular Mechanics (QM/MM) Methods
29(12)
3.1 Interactions between the QM and MM Regions
31(3)
3.2 Basic Theory of QM/MM Methods
34(1)
3.3 Treatment of Long-Range Electrostatic Interactions in QM/MM Simulations
35(2)
3.4 QM/MM Partitioning Methods and Schemes
37(4)
4 Some Comments on Experimental Approaches to the Determination of Biomolecular Structure
41(2)
5 Computational Enzymology
43(16)
5.1 Goals in Modelling Enzyme Reactions
43(2)
5.2 Methods for Modelling Enzyme-Catalysed Reaction Mechanisms
45(1)
5.3 Quantum Chemical Approaches to Modelling Enzyme Reactions: Cluster (or Supermolecule) Approaches, and Linear-Scaling QM Methods
45(2)
5.4 Empirical Valence Bond Methods
47(1)
5.5 Examples of Recent Modelling Studies of Enzymic Reactions
48(11)
6 Ab initio (Car-Parrinello) Molecular Dynamics Simulations
59(1)
7 Conclusions
60(9)
Acknowledgements
60(1)
References
61(8)
Polarizabilities, Hyperpolarizabilities and Analogous Magnetic Properties
69(39)
David Pugh
1 Introduction
69(1)
2 Electric Field Related Effects
70(27)
2.1 Atoms
70(3)
2.2 Diatomic Molecules: Non-Relativistic
73(1)
2.3 Diatomic Molecules: Relativistic
73(1)
2.4 Atom-Atom Interactions
74(1)
2.5 Inert Gas Compounds
74(2)
2.6 Water
76(11)
2.7 Small Polyatomic Molecules
87(1)
2.8 Medium Sized Organic Molecules
88(5)
2.9 Organo-Metallic Complexes
93(1)
2.10 Open Shells and Ionic Structures
93(2)
2.11 Clusters, Intermolecular and Solvent Effects, Fullerenes, Nanotubes
95(1)
2.12 One and Two Photon Absorption, Luminescence etc.
95(1)
2.13 Theoretical Developments
95(1)
2.14 Oligomers and Polymers
96(1)
2.15 Molecules in Crystals
96(1)
3 Magnetic Effects
97(11)
3.1 Inert Gases, Atoms, Diatomics
97(1)
3.2 Molecular Magnetisabilities, Nuclear Shielding and Aromaticity, Gauge Invariance
98(1)
References
99(9)
Applications of Density Functional Theory to Heterogeneous Catalysis
108(53)
David S. Scholl
1 Introduction
108(3)
2 Success Stories
111(18)
2.1 Success Story Number One: CO Oxidation over RuO2(110)
111(3)
2.2 Success Story Number Two: Ammonia Synthesis on Ru Catalysts
114(8)
2.3 Success Story Number Three: Ethylene Epoxidation
122(7)
3 Areas of Recent Activity
129(17)
3.1 Ab initio Thermodynamics
130(4)
3.2 Catalytic Activity of Supported Gold Nanoclusters
134(8)
3.3 Bimetallic Catalysts
142(4)
4 Areas Poised for Future Progress
146(6)
4.1 Catalysis In Reversible Hydrogen Storage
146(1)
4.2 Electrocatalysis
147(1)
4.3 Zeolite Catalysis
148(4)
5 Conclusion and Outlook
152(9)
Acknowledgements
152(1)
References
153(8)
Numerical Methods in Chemistry
161(88)
T.E. Simos
1 Introduction
161(2)
2 Partitioned Trigonometrically-Fitted Multistep Methods
163(13)
2.1 First Method of the Partitioned Multistep Method
163(4)
2.2 Second Method of the Partitioned Multistep Method
167(5)
2.3 Numerical Results
172(4)
3 Dispersion and Dissipation Properties for Explicit Runge-Kutta Methods
176(9)
3.1 Basic Theory
176(1)
3.2 Construction of Runge-Kutta Methods which is Based on Dispersion and Dissipation Properties
177(4)
3.3 Numerical Results
181(4)
4 Four-Step P-Stable Methods with Minimal Phase-Lag
185(5)
4.1 Phase-Lag Analysis of General Symmetric 2k -- Step, k N Methods
185(1)
4.2 Development of the New Method
186(3)
4.3 Numerical Results
189(1)
5 Trigonometrically Fitted Fifth-Order Runge-Kutta Methods for the Numerical Solution of the Schrodinger Equation
190(4)
5.1 Explicit Runge-Kutta Methods for the Schrodinger Equation
190(1)
5.2 Exponentially Fitted Runge-Kutta Methods
191(1)
5.3 Construction of Trigonometrically-Fitted Runge-Kutta Methods
191(3)
6 Four-Step P-Stable Trigonometrically-Fitted Methods
194(6)
6.1 Development of the New Method
194(4)
6.2 Numerical Results
198(2)
7 Comments on the Recent Bibliography
200(49)
References
209(2)
Appendix A Partitioned Multistep Methods -- Maple Program of Construction of the Methods
211(5)
Appendix B Maple Program for the development of Dispersive-fitted and dissipative-fitted explicit Runge-Kutta method
216(7)
Appendix C Maple Program for the development of explicit Runge-Kutta method with minimal Dispersion
223(7)
Appendix D Maple Program for the development of explicit Runge-Kutta method with minimal Dissipation
230(7)
Appendix E Maple Program for the development of the New Four-Step P-stable method with minimal Phase-Lag
237(1)
Appendix F Maple Program for the development of the Trigonometrically Fitted Fifth-Order Runge-Kutta Methods
238(6)
Appendix G Maple Program for the development of the New Four-Step P-stable Trigonometrically-Fitted method
244(5)
Determination of Structure in Electronic Structure Calculations
249(75)
Michael Springborg
1 Introduction
249(7)
2 Determining the Global Total-Energy Minima for Clusters
256(15)
2.1 Random vs. Selected Structures
256(2)
2.2 Molecular-Dynamics and Monte Carlo Simulations
258(2)
2.3 The Car-Parrinello Method
260(1)
2.4 Eigenmode Methods
261(2)
2.5 GDIIS
263(1)
2.6 Lattice Growth
264(1)
2.7 Cluster Growth
265(1)
2.8 Aufbau/Abbau Method
265(1)
2.9 The Basin Hopping Method
266(1)
2.10 Genetic Algorithms
267(1)
2.11 Tabu Search
268(2)
2.12 Combining the Methods
270(1)
3 Descriptors for Cluster Properties
271(7)
3.1 Energetics
271(1)
3.2 Shape
272(1)
3.3 Atomic Positions
272(1)
3.4 Structural Similarity
273(1)
3.5 Structural Motifs
274(2)
3.6 Phase Transitions
276(2)
4 Examples for Optimizing the Structures of Clusters
278(30)
4.1 One-Component Lennard-Jones Clusters
278(4)
4.2 Two-Component Lennard-Jones Clusters
282(1)
4.3 Morse Clusters
283(1)
4.4 Sodium Clusters
284(4)
4.5 Other Metal Clusters
288(9)
4.6 Non-Metal Clusters
297(2)
4.7 Metal Clusters with More Types of Atoms
299(5)
4.8 Non-Metal Clusters with More Types of Atoms
304(3)
4.9 Clusters on Surfaces
307(1)
5 Determining Saddle Points and Reaction Paths
308(6)
5.1 Interpolation
309(1)
5.2 Eigenmode Methods
309(1)
5.3 The Intrinsic Reaction Path
310(1)
5.4 Changing the Fitness Function
310(1)
5.5 Chain-of-States Methods
311(1)
5.6 Nudged Elastic-Band Methods
312(1)
5.7 String Methods
312(2)
5.8 Approximating the Total-Energy Surface
314(1)
6 Examples for Saddle-Point and Reaction-Path Calculations
314(4)
7 Conclusions
318(6)
References
320(4)
Simulation of Liquids
324(81)
B.D. Todd
D.J. Searles
1 Introduction
324(1)
2 Classical Simulation Techniques
325(7)
2.1 Statistical Mechanical Ensembles and Equilibrium Techniques
325(3)
2.2 Nonequilibrium MD Simulations and Hybrid Atomistic-Continuum Schemes
328(4)
3 Potential Energy Hypersurfaces for Liquid State Simulations
332(7)
3.1 Quantum Mechanical Interaction Potentials for Weak Interactions
334(2)
3.2 Three-Body Interactions
336(1)
3.3 Potential Energy Functions for Confined Fluids
337(2)
4 Quantum Mechanical Considerations
339(4)
4.1 Born-Oppenheimer, Car-Parrinello and Atom-Centred Density Matrix Propagation Methods
339(1)
4.2 Hybrid Methods
340(1)
4.3 Cluster Calculations
341(1)
4.4 Dynamical Quantum Effects
341(2)
5 Lyapunov Exponents
343(1)
6 Thermodynamic and Transport Properties
344(11)
6.1 Thermodynamic Properties
344(3)
6.2 Free Energies and Entropy Production
347(3)
6.3 Transport Properties
350(5)
7 Phase Diagrams and Phase Transitions
355(5)
7.1 Bulk Fluids
355(3)
7.2 Phase Transitions in Confined Systems
358(2)
8 Complex Fluids
360(16)
8.1 Colloids, Dendrimers, Alkanes, Biomolecular Systems, etc.
361(6)
8.2 Polymers
367(9)
9 Confined Fluids
376(15)
9.1 Nanofluidics, Friction, Stick-Slip Boundary Conditions, Transport and Structure
377(7)
9.2 Confined Complex Fluids
384(5)
9.3 Simple Models
389(2)
10 Water
391(1)
11 Conclusions
392(13)
References
392(13)
Combinatorial Enumeration in Chemistry
405(65)
A. Milicevic
N. Trinajstic
1 Introduction
405(1)
2 Current Results
405(52)
2.1 Isomer Enumeration
405(16)
2.2 Kekule Structures
421(15)
2.3 Walks
436(6)
2.4 Structural Complexity
442(8)
2.5 Other Enumerations
450(7)
3 Conclusion
457(13)
Acknowledgment
459(1)
References
459(11)
Many-Body Perturbation Theory and its Application to the Molecular Structure Problem
470
S. Wilson
1 Introduction
470(2)
2 Computation and Supercomputation
472(38)
2.1 The Role of Computation
473(2)
2.2 Supercomputational Science
475(1)
2.3 Literate Programming
476(6)
2.4 A Literate Program for Many-Body Perturbation Theory
482(28)
3 Increasingly Complex Molecular Systems
510(4)
3.1 Large Molecular Systems
511(1)
3.2 Relativistic Formulations
511(1)
3.3 Multireference Formalisms
512(2)
3.4 Multicomponent Formulations
514(1)
4 Diagrammatic Many-Body Perturbation Theory of Molecular Electronic Structure: A Review of Applications
514(9)
4.1 Incidence of the String "MP2" in Titles and/or Keywords and/or Abstracts
514(3)
4.2 Comparison with Other Methods
517(2)
4.3 Synopsis of Applications of Second Order Many-Body Perturbation Theory
519(4)
5 Summary and Prospects
523
References
524