|
|
xi | |
Preface |
|
xiii | |
|
Part 1 Introduction to nanomaterials |
|
|
|
|
3 | (26) |
|
|
|
|
1.1 What is nanoscience and nanotechnology? |
|
|
3 | (3) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
1.2 History of nanotechnology |
|
|
6 | (4) |
|
1.2.1 Feynman talks on small structures |
|
|
7 | (2) |
|
1.2.2 Emergence of nanotechnology |
|
|
9 | (1) |
|
|
10 | (3) |
|
1.3.1 Special at nanoscale |
|
|
10 | (3) |
|
|
13 | (2) |
|
1.4.1 Types of nanoparticles |
|
|
14 | (1) |
|
|
15 | (5) |
|
1.5.1 What are nanoparticles, nanotubes, and nanoplates? |
|
|
16 | (1) |
|
1.5.2 Classification of nanomaterials |
|
|
17 | (3) |
|
1.6 Applications and challenges in nanotechnologies |
|
|
20 | (5) |
|
|
20 | (5) |
|
1.6.2 Challenges in nanotechnology |
|
|
25 | (1) |
|
|
25 | (4) |
|
|
29 | (22) |
|
|
|
|
2.1 Wave-particle duality |
|
|
29 | (1) |
|
2.2 Electromagnetic waves |
|
|
30 | (1) |
|
|
30 | (2) |
|
2.4 The de Broglie hypothesis |
|
|
32 | (3) |
|
|
32 | (3) |
|
2.4.2 Implications of de Broglie hypothesis |
|
|
35 | (1) |
|
2.5 Evidence for the wave nature of electrons |
|
|
35 | (2) |
|
2.5.1 Davisson--Cermer experiment |
|
|
36 | (1) |
|
2.5.2 C. P. Thomson's experiment |
|
|
37 | (1) |
|
2.6 Heisenberg's uncertainty principle |
|
|
37 | (2) |
|
|
39 | (1) |
|
|
39 | (2) |
|
|
40 | (1) |
|
2.8.2 Ultimate limits of the law |
|
|
41 | (1) |
|
|
41 | (6) |
|
2.9.1 Tunneling through a single potential barrier |
|
|
43 | (3) |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
47 | (2) |
|
|
49 | (2) |
|
3 Interfaces and surfaces |
|
|
51 | (38) |
|
|
|
|
|
|
|
51 | (2) |
|
3.2 Surface physics and chemistry |
|
|
53 | (1) |
|
3.3 Surface and interface |
|
|
54 | (1) |
|
|
55 | (10) |
|
3.4.1 Methods of surface modification |
|
|
55 | (10) |
|
|
65 | (13) |
|
3.5.1 Deposition techniques |
|
|
67 | (11) |
|
|
78 | (3) |
|
3.6.1 Molecular self-assembly systems |
|
|
79 | (1) |
|
3.6.2 Idea of molecular self-assembly |
|
|
80 | (1) |
|
3.6.3 Equilibrium and nonequilibrium self-assembly |
|
|
81 | (1) |
|
|
81 | (8) |
|
4 Properties of nanomaterials |
|
|
89 | (30) |
|
|
|
|
|
|
|
4.1 Background history of subatomic particles |
|
|
89 | (1) |
|
4.2 Subatomic physics to chemical systems |
|
|
90 | (7) |
|
4.2.1 Types of chemical bonds |
|
|
91 | (6) |
|
4.3 Properties of nanomaterials |
|
|
97 | (18) |
|
4.3.1 Electrical properties |
|
|
97 | (3) |
|
4.3.2 Mechanical properties |
|
|
100 | (3) |
|
|
103 | (6) |
|
4.3.4 Magnetic properties |
|
|
109 | (4) |
|
|
113 | (2) |
|
|
115 | (2) |
|
|
117 | (2) |
|
5 Tools and instrumentation |
|
|
119 | (34) |
|
|
|
|
|
|
|
120 | (7) |
|
|
120 | (1) |
|
5.1.2 Concept of microscopy |
|
|
120 | (2) |
|
|
122 | (3) |
|
5.1.4 Various optical microscopic techniques |
|
|
125 | (2) |
|
|
127 | (2) |
|
5.2.1 Electron interaction with material sample |
|
|
127 | (2) |
|
5.2.2 Working of electron microscopy |
|
|
129 | (1) |
|
5.3 Types of electron microscopy |
|
|
129 | (6) |
|
5.3.1 Scanning electron microscope |
|
|
129 | (3) |
|
5.3.2 Transmission electron microscope |
|
|
132 | (3) |
|
5.3.3 Dissimilarities between scanning electron microscope and transmission electron microscope |
|
|
135 | (1) |
|
5.4 Scanning tunneling microscope |
|
|
135 | (2) |
|
5.4.1 Components and workings |
|
|
136 | (1) |
|
5.5 Atomic force microscopy |
|
|
137 | (7) |
|
5.5.1 Construction of atomic force microscope |
|
|
139 | (2) |
|
5.5.2 Working principle of atomic force microscope |
|
|
141 | (1) |
|
|
142 | (1) |
|
5.5.4 Advantages and disadvantages |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
144 | (1) |
|
5.7 Synchrotron radiation |
|
|
145 | (1) |
|
5.8 Atom probe instrument |
|
|
146 | (4) |
|
|
147 | (1) |
|
5.8.2 Working of atom probe field ion microscopy |
|
|
147 | (2) |
|
5.8.3 Mathematical analysis |
|
|
149 | (1) |
|
5.8.4 Limitations of atom probe |
|
|
149 | (1) |
|
5.8.5 Comparison with tunneling electron microscope and SIMS |
|
|
149 | (1) |
|
|
150 | (3) |
|
6 Fabricating nanostructures |
|
|
153 | (26) |
|
|
|
|
|
|
|
|
153 | (2) |
|
|
155 | (6) |
|
|
156 | (3) |
|
6.2.2 Electron beam lithography |
|
|
159 | (2) |
|
6.3 Molecular beam epitaxy |
|
|
161 | (3) |
|
6.3.1 Molecular beam epitaxy process |
|
|
161 | (1) |
|
|
162 | (1) |
|
6.3.3 Molecular beam epitaxy layout |
|
|
162 | (1) |
|
6.3.4 Features of molecular beam epitaxy |
|
|
163 | (1) |
|
6.3.5 Advantages and disadvantages of molecular beam epitaxy |
|
|
164 | (1) |
|
6.3.6 In situ growth monitoring techniques |
|
|
164 | (1) |
|
|
164 | (3) |
|
6.4.1 Distinctive features |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
166 | (1) |
|
|
166 | (1) |
|
6.4.7 Self-assembly at the macroscopic scale |
|
|
166 | (1) |
|
|
167 | (6) |
|
6.5.1 The construction of focused ion beam |
|
|
167 | (5) |
|
|
172 | (1) |
|
6.5.3 Applications of FIB |
|
|
172 | (1) |
|
6.6 Stamp technology stamping |
|
|
173 | (2) |
|
|
173 | (1) |
|
|
174 | (1) |
|
6.6.3 Industrial applications |
|
|
174 | (1) |
|
|
175 | (4) |
|
Part 2 Interactions in nanomaterials |
|
|
|
7 Electrons in nanostructures |
|
|
179 | (28) |
|
|
|
|
|
7.1 Introduction to electrons |
|
|
179 | (2) |
|
7.1.1 Importance of electrons in bonding |
|
|
180 | (1) |
|
7.2 Emission of electrons |
|
|
181 | (4) |
|
7.2.1 Thermionic emission |
|
|
182 | (1) |
|
|
183 | (1) |
|
7.2.3 Photoelectric emission |
|
|
184 | (1) |
|
7.2.4 Secondary electron emission |
|
|
184 | (1) |
|
7.3 Variations in electronic properties of materials |
|
|
185 | (2) |
|
7.3.1 Electrical properties |
|
|
185 | (1) |
|
|
186 | (1) |
|
7.4 Electrons in nanostructures |
|
|
187 | (3) |
|
7.4.1 Quantum effects of electrons in nanostructures |
|
|
188 | (2) |
|
|
190 | (3) |
|
|
193 | (1) |
|
7.6.1 Implications of Bloch's theorem |
|
|
194 | (1) |
|
|
194 | (4) |
|
|
196 | (1) |
|
|
197 | (1) |
|
7.8 Single electron transistor |
|
|
198 | (4) |
|
7.8.1 Operation of single electron transistor |
|
|
199 | (1) |
|
|
200 | (2) |
|
|
202 | (2) |
|
|
204 | (3) |
|
|
207 | (18) |
|
|
|
|
|
|
8.1 Molecular electronics |
|
|
207 | (2) |
|
|
209 | (3) |
|
|
210 | (2) |
|
8.3 Variational approach to calculate molecular orbitals |
|
|
212 | (1) |
|
8.4 Hybridization of atomic orbitals |
|
|
213 | (2) |
|
8.5 Donor acceptor properties |
|
|
215 | (1) |
|
8.6 Electron transfer between molecules |
|
|
216 | (1) |
|
8.7 Charge transport in weakly interacting molecular solids |
|
|
217 | (1) |
|
8.8 Single molecule electronics |
|
|
217 | (5) |
|
8.8.1 Theoretical background |
|
|
218 | (2) |
|
|
220 | (2) |
|
|
222 | (3) |
|
|
225 | (48) |
|
|
|
|
|
|
9.1 Introduction of nanomaterials |
|
|
225 | (2) |
|
|
226 | (1) |
|
|
227 | (2) |
|
|
228 | (1) |
|
|
229 | (6) |
|
|
229 | (1) |
|
9.3.2 Properties of nanowires |
|
|
230 | (4) |
|
9.3.3 Applications of nanowires |
|
|
234 | (1) |
|
|
235 | (5) |
|
9.4.1 Optoelectronics and microelectronics |
|
|
236 | (4) |
|
|
240 | (1) |
|
9.5 Magnetic nanostructures |
|
|
240 | (11) |
|
|
241 | (5) |
|
9.5.2 Properties of magnetic nanostructures |
|
|
246 | (2) |
|
9.5.3 Applications of magnetic nanostructures |
|
|
248 | (3) |
|
|
251 | (2) |
|
|
253 | (8) |
|
|
261 | (5) |
|
|
266 | (7) |
|
Part 3 Applications of nanomaterials |
|
|
|
|
273 | (16) |
|
|
|
|
|
|
10.1 Introduction to Nanobiotechnology |
|
|
273 | (1) |
|
|
274 | (4) |
|
|
275 | (2) |
|
|
277 | (1) |
|
10.3 DNA assembly of nanoparticles |
|
|
278 | (1) |
|
|
278 | (1) |
|
10.4 Protein and DNA assembly |
|
|
278 | (3) |
|
|
278 | (1) |
|
|
279 | (2) |
|
|
281 | (2) |
|
|
283 | (1) |
|
|
284 | (2) |
|
|
286 | (3) |
|
11 Nanotechnology: the road ahead |
|
|
289 | (20) |
|
|
|
|
|
|
|
|
289 | (3) |
|
11.1.1 Nanoscaled biomolecules |
|
|
290 | (2) |
|
11.2 Structure of carbon nanotubes |
|
|
292 | (1) |
|
|
293 | (3) |
|
11.3.1 Properties of quantum dots |
|
|
293 | (2) |
|
11.3.2 Fabrication of quantum dots |
|
|
295 | (1) |
|
11.4 Energy harvesting and storage |
|
|
296 | (5) |
|
11.4.1 Piezoelectric nanogenerators |
|
|
296 | (1) |
|
|
297 | (2) |
|
11.4.3 Electrochemical energy storage |
|
|
299 | (2) |
|
|
301 | (4) |
|
11.5.1 Nanostructures in quantum informatics |
|
|
302 | (3) |
|
|
305 | (4) |
Glossary |
|
309 | (2) |
Index |
|
311 | |