Atjaunināt sīkdatņu piekrišanu

E-grāmata: Chemistry of Nanomaterials: Fundamentals and Applications

(Department of Physics, Faculty of Science, University of Gujrat, Gujrat, Pakistan), (Department of Physics, Faculty of Science, University of Gujrat,), (Department of Physics, Faculty of Science, University of Gujrat, Gujrat, Pakistan)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 16-May-2020
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128189092
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 203,82 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 16-May-2020
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128189092
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Chemistry of Nanomaterials: Fundamentals and Applications provides a foundational introduction to this chemistry. Beginning with an introduction to the field of nanoscience and technology, the book goes on to outline a whole range of important effects, interactions and properties. Tools used to assess such properties are discussed, followed by chapters putting this fundamental knowledge in context by providing examples of nanomaterials and their applications in the real world. Drawing on the experience of its expert authors, this book is an accessible introduction to the interactions at play in nanomaterials for both upper-level students and researchers.

  • Highlights the foundational chemical interactions at play in nanomaterials
  • Provides accessible insight for readers across multidisciplinary fields
  • Places nanomaterial chemistry in the context of the broader field of nanoscale research
List of Contributors
xi
Preface xiii
Part 1 Introduction to nanomaterials
1 Introduction
3(26)
Tahir Iqbal Awan
Aqsa Tehseen
Almas Bashir
1.1 What is nanoscience and nanotechnology?
3(3)
1.1.1 Nanoworld
4(1)
1.1.2 Nanoscience
4(1)
1.1.3 Nanotechnology
5(1)
1.2 History of nanotechnology
6(4)
1.2.1 Feynman talks on small structures
7(2)
1.2.2 Emergence of nanotechnology
9(1)
1.3 Nanometer scale
10(3)
1.3.1 Special at nanoscale
10(3)
1.4 Nanoparticles
13(2)
1.4.1 Types of nanoparticles
14(1)
1.5 Nanomaterials
15(5)
1.5.1 What are nanoparticles, nanotubes, and nanoplates?
16(1)
1.5.2 Classification of nanomaterials
17(3)
1.6 Applications and challenges in nanotechnologies
20(5)
1.6.1 Applications
20(5)
1.6.2 Challenges in nanotechnology
25(1)
References
25(4)
2 Quantum effects
29(22)
Tahir Iqbal Awan
Almas Bashir
Aqsa Tehseen
2.1 Wave-particle duality
29(1)
2.2 Electromagnetic waves
30(1)
2.3 Energy quanta
30(2)
2.4 The de Broglie hypothesis
32(3)
2.4.1 Derivation
32(3)
2.4.2 Implications of de Broglie hypothesis
35(1)
2.5 Evidence for the wave nature of electrons
35(2)
2.5.1 Davisson--Cermer experiment
36(1)
2.5.2 C. P. Thomson's experiment
37(1)
2.6 Heisenberg's uncertainty principle
37(2)
2.7 Quantum dots
39(1)
2.8 Moore's law
39(2)
2.8.1 Moore's second law
40(1)
2.8.2 Ultimate limits of the law
41(1)
2.9 Quantum tunneling
41(6)
2.9.1 Tunneling through a single potential barrier
43(3)
2.9.2 Applications
46(1)
2.10 Exercise
47(1)
References
47(2)
Further reading
49(2)
3 Interfaces and surfaces
51(38)
Almas Bashir
Tahir Iqbal Awan
Aqsa Tehseen
Muhammad Bilal Tahir
Mohsin Ijaz
3.1 Introduction
51(2)
3.2 Surface physics and chemistry
53(1)
3.3 Surface and interface
54(1)
3.4 Surface modification
55(10)
3.4.1 Methods of surface modification
55(10)
3.5 Thin-film deposition
65(13)
3.5.1 Deposition techniques
67(11)
3.6 Self-assembly
78(3)
3.6.1 Molecular self-assembly systems
79(1)
3.6.2 Idea of molecular self-assembly
80(1)
3.6.3 Equilibrium and nonequilibrium self-assembly
81(1)
References
81(8)
4 Properties of nanomaterials
89(30)
Muhammad Rafique
Syeda Hajra
Muhammad Bilal Tahir
Tahir Iqbal Awan
Almas Bashir
Aqsa Tehseen
4.1 Background history of subatomic particles
89(1)
4.2 Subatomic physics to chemical systems
90(7)
4.2.1 Types of chemical bonds
91(6)
4.3 Properties of nanomaterials
97(18)
4.3.1 Electrical properties
97(3)
4.3.2 Mechanical properties
100(3)
4.3.3 Thermal properties
103(6)
4.3.4 Magnetic properties
109(4)
4.3.5 Optical properties
113(2)
References
115(2)
Further reading
117(2)
5 Tools and instrumentation
119(34)
Aqsa Tehseen
Tahir Iqbal Awan
Almas Bashir
Sumera Afsheen
Muhammad Yaqoob Khan
5.1 Microscopy
120(7)
5.1.1 Brief history
120(1)
5.1.2 Concept of microscopy
120(2)
5.1.3 Optical microscopy
122(3)
5.1.4 Various optical microscopic techniques
125(2)
5.2 Electron microscopy
127(2)
5.2.1 Electron interaction with material sample
127(2)
5.2.2 Working of electron microscopy
129(1)
5.3 Types of electron microscopy
129(6)
5.3.1 Scanning electron microscope
129(3)
5.3.2 Transmission electron microscope
132(3)
5.3.3 Dissimilarities between scanning electron microscope and transmission electron microscope
135(1)
5.4 Scanning tunneling microscope
135(2)
5.4.1 Components and workings
136(1)
5.5 Atomic force microscopy
137(7)
5.5.1 Construction of atomic force microscope
139(2)
5.5.2 Working principle of atomic force microscope
141(1)
5.5.3 Modes of operation
142(1)
5.5.4 Advantages and disadvantages
143(1)
5.5.5 Applications
144(1)
5.6 Fluorescence method
144(1)
5.7 Synchrotron radiation
145(1)
5.8 Atom probe instrument
146(4)
5.8.1 Construction
147(1)
5.8.2 Working of atom probe field ion microscopy
147(2)
5.8.3 Mathematical analysis
149(1)
5.8.4 Limitations of atom probe
149(1)
5.8.5 Comparison with tunneling electron microscope and SIMS
149(1)
References
150(3)
6 Fabricating nanostructures
153(26)
Tahir Iqbal Awan
Muhammad Irfan
Mohsin Ijaz
Almas Bashir
Aqsa Tehseen
Sumera Afsheen
6.1 Introduction
153(2)
6.2 Lithography
155(6)
6.2.1 Photolithography
156(3)
6.2.2 Electron beam lithography
159(2)
6.3 Molecular beam epitaxy
161(3)
6.3.1 Molecular beam epitaxy process
161(1)
6.3.2 Working principle
162(1)
6.3.3 Molecular beam epitaxy layout
162(1)
6.3.4 Features of molecular beam epitaxy
163(1)
6.3.5 Advantages and disadvantages of molecular beam epitaxy
164(1)
6.3.6 In situ growth monitoring techniques
164(1)
6.4 Self-assembled masks
164(3)
6.4.1 Distinctive features
165(1)
6.4.2 Order
165(1)
6.4.3 Interactions
165(1)
6.4.4 Building blocks
166(1)
6.4.5 Examples
166(1)
6.4.6 Properties
166(1)
6.4.7 Self-assembly at the macroscopic scale
166(1)
6.5 Focused ion beam
167(6)
6.5.1 The construction of focused ion beam
167(5)
6.5.2 Principle
172(1)
6.5.3 Applications of FIB
172(1)
6.6 Stamp technology stamping
173(2)
6.6.1 Operations
173(1)
6.6.2 Stamping lubricant
174(1)
6.6.3 Industrial applications
174(1)
References
175(4)
Part 2 Interactions in nanomaterials
7 Electrons in nanostructures
179(28)
Tahir Iqbal Awan
Almas Bashir
Aqsa Tehseen
Saliha Bibi
7.1 Introduction to electrons
179(2)
7.1.1 Importance of electrons in bonding
180(1)
7.2 Emission of electrons
181(4)
7.2.1 Thermionic emission
182(1)
7.2.2 Field emission
183(1)
7.2.3 Photoelectric emission
184(1)
7.2.4 Secondary electron emission
184(1)
7.3 Variations in electronic properties of materials
185(2)
7.3.1 Electrical properties
185(1)
7.3.2 Optical properties
186(1)
7.4 Electrons in nanostructures
187(3)
7.4.1 Quantum effects of electrons in nanostructures
188(2)
7.5 Free electron model
190(3)
7.6 Bloch's theorem
193(1)
7.6.1 Implications of Bloch's theorem
194(1)
7.7 Band structure
194(4)
7.7.1 Energetic bands
196(1)
7.7.2 Band gaps
197(1)
7.8 Single electron transistor
198(4)
7.8.1 Operation of single electron transistor
199(1)
7.8.2 Applications
200(2)
7.9 Resonant tunneling
202(2)
References
204(3)
8 Molecular electronics
207(18)
Khalid Nadeem Riaz
Zainab Israr
Tahir Iqbal Awan
Almas Bashir
Aqsa Tehseen
8.1 Molecular electronics
207(2)
8.2 Lewis structures
209(3)
8.2.1 Limitations
210(2)
8.3 Variational approach to calculate molecular orbitals
212(1)
8.4 Hybridization of atomic orbitals
213(2)
8.5 Donor acceptor properties
215(1)
8.6 Electron transfer between molecules
216(1)
8.7 Charge transport in weakly interacting molecular solids
217(1)
8.8 Single molecule electronics
217(5)
8.8.1 Theoretical background
218(2)
8.8.2 Examples
220(2)
References
222(3)
9 Nanomaterials
225(48)
Tahir Iqbal Awan
Anam Ahmad
Saliha Bibi
Aqsa Tehseen
Almas Bashir
9.1 Introduction of nanomaterials
225(2)
9.1.1 Dimensionality
226(1)
9.2 Quantum dots
227(2)
9.2.1 Applications
228(1)
9.3 Nanowires
229(6)
9.3.1 Synthesis
229(1)
9.3.2 Properties of nanowires
230(4)
9.3.3 Applications of nanowires
234(1)
9.4 Nanophotonics
235(5)
9.4.1 Optoelectronics and microelectronics
236(4)
9.4.2 Basic principles
240(1)
9.5 Magnetic nanostructures
240(11)
9.5.1 Synthesis
241(5)
9.5.2 Properties of magnetic nanostructures
246(2)
9.5.3 Applications of magnetic nanostructures
248(3)
9.6 Nano thermal devices
251(2)
9.7 Nanofluidic devices
253(8)
9.8 Biomimetic materials
261(5)
References
266(7)
Part 3 Applications of nanomaterials
10 Nanobiotechnology
273(16)
Sumera Afsheen
Muhammad Irfan
Tahir Iqbal Awan
Almas Bashir
Mohsin Ijaz
10.1 Introduction to Nanobiotechnology
273(1)
10.2 DNA microarrays
274(4)
10.2.1 Principle
275(2)
10.2.2 Applications
277(1)
10.3 DNA assembly of nanoparticles
278(1)
10.3.1 Uses
278(1)
10.4 Protein and DNA assembly
278(3)
10.4.1 Protein assembly
278(1)
10.4.2 DNA assembly
279(2)
10.5 Digital cells
281(2)
10.6 Genetic circuits
283(1)
10.7 DNA computing
284(2)
References
286(3)
11 Nanotechnology: the road ahead
289(20)
Muhammad Bilal Tahir
Muhammad Abrar
Aqsa Tehseen
Tahir Iqbal Awan
Almas Bashir
Chulam Nabi
11.1 Nanostructures
289(3)
11.1.1 Nanoscaled biomolecules
290(2)
11.2 Structure of carbon nanotubes
292(1)
11.3 Quantum dots (QDs)
293(3)
11.3.1 Properties of quantum dots
293(2)
11.3.2 Fabrication of quantum dots
295(1)
11.4 Energy harvesting and storage
296(5)
11.4.1 Piezoelectric nanogenerators
296(1)
11.4.2 Solar cells
297(2)
11.4.3 Electrochemical energy storage
299(2)
11.5 Quantum informatics
301(4)
11.5.1 Nanostructures in quantum informatics
302(3)
References
305(4)
Glossary 309(2)
Index 311
Tahir Iqbal is an Assistant Professor of Physics in the Department of Physics at University of Gujrat. His main area of scientific interest is in Nano-photonics and Plasmonics, Nano-fabrication and Nano-characterization near-field optics, scanning probe microscopy, optical properties of metallic nanostructures and Nanotechnology. Almas Bashir is a Lecturer of Physics and an up-and-coming researcher in the University of Gujrat in the field of Nanotechnology with a particular focus on Nanoplasmonics. Aqsa Tehseen is an up-and-coming researcher in the University of Gujrat. Her field of interests are Nanotechnology with a particular focus on Nanoplasmonics.