Atjaunināt sīkdatņu piekrišanu

E-grāmata: Chemistry of Sustainable Energy

  • Formāts: 446 pages
  • Izdošanas datums: 25-Mar-2014
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781466575332
  • Formāts - PDF+DRM
  • Cena: 96,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 446 pages
  • Izdošanas datums: 25-Mar-2014
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781466575332

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Carpenter presents this qualitative text on sustainable energy chemistry, beginning with a foundational discussion of energy definitions and units. Extraction and refining of fossil fuels isthen discussed, along with carbon capture and storage techniques. Beginning the discussion of sustainability is a chapter on thermodynamics, followed by technological descriptions of polymers and their uses, catalysis, hydrogen production, fuel cells, varieties of photovoltaic systems, biomass usage, and nuclear energy. Closing remarks emphasize the closed matter system view of the Earth and the ultimate limitation of the sun’s input on our energy production and materials processing. Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)

Understanding the chemistry underlying sustainable energy is central to any long-term solution to meeting our future energy needs. Chemistry of Sustainable Energy presents chemistry through the lens of several sustainable energy options, demonstrating the breadth and depth of research being carried out to address issues of sustainability and the global energy demand. The author, an organic chemist, reinforces fundamental principles of chemistry as they relate to renewable or sustainable energy generation throughout the book.

Written with a qualitative, structural bias, this survey text illustrates the increasingly interdisciplinary nature of chemistry research with examples from the literature to provide relevant snapshots of how solutions are developed, providing a broad foundation for further exploration. It examines those areas of energy conversion that show the most promise of achieving sustainability at this point, namely, wind power, fuel cells, solar photovoltaics, and biomass conversion processes. Next-generation nuclear power is addressed as well.

This book also covers topics related to energy and energy generation that are closely tied to understanding the chemistry of sustainable energy, including fossil fuels, thermodynamics, polymers, hydrogen generation and storage, and carbon capture. It offers readers a broad understanding of relevant fundamental chemical principles and in-depth exposure to creative and promising approaches to sustainable energy development.

Recenzijas

" a useful resource for faculty teaching chemistry students who are unsure about what specialty they would like to explore more deeply or for specialty courses on the topic. Summing Up: Recommended. Upper-division undergraduates through researchers/faculty." D. H. Stedman, University of Denver in CHOICE Magazine

"Overall, the book is concise and easy to follow for readers with an understanding of A-level chemistry or above. It will be a valuable and handy reference to various stakeholders of energy technologies, including policy makers, company managers, postgraduate students, school teachers and even some energy specialists." Reviewed by George Chen in Chemistry World

Acknowledgments xv
Author xvii
Introduction xix
Chapter 1 Energy Basics
1(18)
1.1 What Is Energy?
1(5)
1.2 Energy, Technology, and Sustainability
6(5)
1.2.1 What Does Sustainability Mean?
6(1)
1.2.2 Carbon Cycle
7(2)
1.2.3 Resource Availability
9(2)
1.3 Energy Units, Terms, and Abbreviations
11(3)
1.4 Electricity Generation and Storage
14(5)
Other Resources
16(1)
References
17(2)
Chapter 2 Fossil Fuels
19(36)
2.1 Formation of Oil and Gas
19(4)
2.2 Extraction of Fossil Fuels
23(7)
2.2.1 Conventional Petroleum
23(1)
2.2.2 Nonconventional Sources
24(1)
2.2.2.1 Shale Oil and Gas
24(2)
2.2.2.2 Heavy Oil
26(1)
2.2.2.3 Oil Sands
27(2)
2.2.2.4 Coal Bed Methane and Methane Hydrates
29(1)
2.3 Refining
30(7)
2.3.1 Crude Petroleum
30(1)
2.3.1.1 Distillation
31(2)
2.3.1.2 Extraction
33(1)
2.3.1.3 Cracking
34(2)
2.3.1.4 Reforming
36(1)
2.3.2 Natural Gas
36(1)
2.4 Carbon Capture and Storage
37(13)
2.4.1 Capture and Separation
38(2)
2.4.1.1 Membrane Technology
40(1)
2.4.1.2 Ionic Liquids
40(2)
2.4.1.3 Solid Sorbents
42(1)
2.4.2 Conversion and Utilization
43(1)
2.4.2.1 Sequestration
44(1)
2.4.2.2 Utilization
45(5)
2.5 Summary
50(5)
Other Resources
52(1)
References
52(3)
Chapter 3 Thermodynamics
55(10)
3.1 Introduction
55(1)
3.2 First Law of Thermodynamics
56(1)
3.3 Second Law and Thermodynamic Cycles: The Carnot Efficiency
57(5)
3.4 Exergy and Life-Cycle Assessment
62(3)
Other Resources
62(1)
References
62(3)
Chapter 4 Polymers and Sustainable Energy
65(38)
4.1 Polymer Basics
65(6)
4.2 Synthesis
71(9)
4.2.1 Step-Growth Polymerization
71(2)
4.2.2 Chain-Growth Polymerization
73(1)
4.2.3 Block Copolymers and CO2 Separation
73(4)
4.2.4 Control in Polymer Synthesis
77(3)
4.3 Characterization of Polymers
80(3)
4.4 Polymer Properties
83(3)
4.5 Polymer Chemistry and Wind Energy
86(11)
4.5.1 Introduction
86(3)
4.5.2 Resins
89(2)
4.5.3 Reinforcing Fibers
91(4)
4.5.4 Carbon Nanotubes and Polymer Matrix Composites
95(2)
4.6 Green Chemistry
97(6)
Other Resources
99(1)
References
99(4)
Chapter 5 Catalysis and Hydrogen Production
103(34)
5.1 Catalysis
103(3)
5.2 Hydrogen Production
106(16)
5.2.1 Steam Reforming
108(4)
5.2.2 Aside: The Fischer--Tropsch Process
112(1)
5.2.3 Gasification
112(2)
5.2.4 Water and the Biological Production of Hydrogen
114(1)
5.2.4.1 Microbial Electrolysis of Water
115(1)
5.2.4.2 Hydrogenases
116(3)
5.2.4.3 Photochemical Electrolysis of Water
119(3)
5.3 Hydrogen Storage
122(15)
5.3.1 Metal--Organic Frameworks
125(3)
5.3.2 Metal Hydrides
128(3)
5.3.3 Other CHS Materials
131(2)
Other Resources
133(1)
References
134(3)
Chapter 6 Fuel Cells
137(68)
6.1 Introduction
137(5)
6.1.1 Fuel Cell Basics
137(3)
6.1.2 An Electrochemistry Review
140(2)
6.2 Thermodynamics and Fuel Cells
142(4)
6.2.1 Calculation of Cell Potential
142(1)
6.2.2 Cell Potential and Gibbs Free Energy
143(1)
6.2.2.1 State of Water
144(1)
6.2.2.2 Effect of Temperature and Pressure
145(1)
6.3 Efficiency and Fuel Cells
146(1)
6.4 Cell Performance: Where Do Inefficiencies Come From?
147(3)
6.4.1 Voltage, Current, and Power
147(1)
6.4.2 Polarization
148(1)
6.4.2.1 Loss Due to Activation
149(1)
6.4.2.2 Ohmic Losses
149(1)
6.4.2.3 Concentration Effects
149(1)
6.4.3 Exchange Current
149(1)
6.4.4 Cell Performance and Nernst Equation
150(1)
6.5 Fuel Cell Electrocatalysts
150(4)
6.5.1 Electrocatalysis
150(1)
6.5.2 Oxygen Reduction Reaction
151(3)
6.5.3 Characterization of Catalysts
154(1)
6.6 Polymer Electrolyte Membrane Fuel Cell
154(19)
6.6.1 Introduction
154(2)
6.6.2 General Considerations
156(1)
6.6.2.1 Membrane Electrode Assembly
156(1)
6.6.2.2 Water Management
156(1)
6.6.3 Polymer Development
157(1)
6.6.3.1 Perfluorosulfonic Acid Membranes
157(1)
6.6.3.2 Poly(Arylene Ether) Membranes
158(4)
6.6.3.3 Polyimides and Imidazoles
162(1)
6.6.3.4 Metal--Organic Frameworks
162(5)
6.6.4 Direct Methanol Fuel Cells
167(3)
6.6.4.1 Half-Cell Reactions
170(2)
6.6.4.2 DMFC Electrocatalysts
172(1)
6.7 Solid Oxide Fuel Cells
173(7)
6.7.1 Introduction
173(1)
6.7.2 Reactions
174(1)
6.7.3 Electrode and Electrolyte Materials
175(1)
6.7.3.1 Electrolytes
176(2)
6.7.3.2 Electrodes
178(1)
6.7.4 Fabrication and Characterization
179(1)
6.8 Microbial Fuel Cells
180(3)
6.8.1 Introduction
180(1)
6.8.2 Components
181(1)
6.8.2.1 Anode Fabrication
182(1)
6.8.2.2 Cathode Materials
182(1)
6.9 Fuel Cell Summary
183(1)
6.10 Electrochemical Energy Storage
183(16)
6.10.1 Lithium Ion Batteries
184(3)
6.10.1.1 Lithium--Sulfur Batteries
187(2)
6.10.1.2 Lithium--Air Batteries
189(2)
6.10.2 Sodium-Based Batteries
191(1)
6.10.2.1 Electrolyte
192(1)
6.10.2.2 Cathode
193(1)
6.10.3 Redox Flow Batteries
194(3)
6.10.4 Graphene
197(2)
6.11 Summary
199(6)
Other Resources
199(1)
References
200(5)
Chapter 7 Solar Photovoltaics
205(82)
7.1 Introduction
205(3)
7.2 Solar PV Basics
208(10)
7.2.1 Band Theory and the Photoelectric Effect
208(2)
7.2.2 Electrical Conduction in a PV Device
210(3)
7.2.3 Current--Voltage Curve and Efficiency
213(5)
7.3 Inorganic Solar Cells
218(8)
7.3.1 Silicon
218(1)
7.3.1.1 Architecture
218(1)
7.3.1.2 Materials
219(2)
7.3.2 Thin-Film Inorganic Solar Cells
221(1)
7.3.2.1 Thin-Film Silicon
221(1)
7.3.2.2 Copper Indium Selenide and Alloys
222(3)
7.3.2.3 Cadmium Telluride
225(1)
7.4 Organic Photovoltaics
226(24)
7.4.1 Introduction
226(1)
7.4.2 Mechanism
226(2)
7.4.2.1 HOMO--LUMO Gap
228(2)
7.4.2.2 Characterization of HOMO--LUMO Energy Levels
230(1)
7.4.3 Materials
231(1)
7.4.3.1 Donors
232(7)
7.4.3.2 Acceptors
239(2)
7.4.4 Architecture and Morphology
241(1)
7.4.4.1 Architecture
241(2)
7.4.4.2 Morphology
243(7)
7.5 Dye-Sensitized Solar Cells
250(19)
7.5.1 Introduction
250(1)
7.5.2 Architecture
251(1)
7.5.3 Mechanism
252(2)
7.5.4 Materials
254(1)
7.5.4.1 Metal Oxide
254(6)
7.5.4.2 Dye Sensitizer
260(7)
7.5.4.3 Redox Mediator
267(2)
7.6 Quantum Dot Solar Cells
269(8)
7.6.1 Introduction
269(2)
7.6.2 Architecture and Materials
271(1)
7.6.2.1 Semiconductor
271(1)
7.6.2.2 Quantum Dots
272(2)
7.6.2.3 Redox Mediator and Electrode Materials
274(1)
7.6.3 Mechanism
275(2)
7.7 Sustainability, Photovoltaics, and the CZTS Cell
277(2)
7.8 Conclusions
279(8)
Other Resources
280(1)
References
280(7)
Chapter 8 Biomass
287(68)
8.1 Introduction
287(5)
8.1.1 Carbon Neutrality
287(1)
8.1.2 Biomass Considerations
288(1)
8.1.2.1 Energy Density and Land Use
288(1)
8.1.2.2 Soil and Water
288(1)
8.1.3 What Is Biomass?
289(1)
8.1.4 What Are Biofuels?
289(2)
8.1.5 Some Basic Biochemistry
291(1)
8.2 Chemical Composition of Biomass
292(3)
8.3 Reactivity and Conversion Options
295(3)
8.3.1 Conversion Options
295(1)
8.3.2 General Reactivity Patterns
296(2)
8.4 Biomass Beginnings: Harvesting and Processing
298(3)
8.4.1 Drying
300(1)
8.4.2 Comminution
301(1)
8.4.3 Densification
301(1)
8.5 Thermochemical Processes
301(18)
8.5.1 Introduction
301(1)
8.5.2 Pyrolysis
302(1)
8.5.2.1 Introduction
302(1)
8.5.2.2 Process
302(1)
8.5.2.3 Product
303(1)
8.5.2.4 Pyrolysis Reactions
304(1)
8.5.2.5 Upgrading Bio-Oil
304(9)
8.5.3 Gasification
313(1)
8.5.3.1 Introduction
313(1)
8.5.3.2 Process Parameters and Reactor Design
314(3)
8.5.3.3 Gasification Reactions
317(1)
8.5.3.4 Contaminants and Catalysis
318(1)
8.5.4 Conclusions
319(1)
8.6 Biochemical Processes
319(29)
8.6.1 Fermentation
319(2)
8.6.1.1 Fermentation of Starch
321(3)
8.6.1.2 Fermentation of Lignocellulosic Biomass
324(5)
8.6.2 Anaerobic Digestion
329(1)
8.6.2.1 Biochemistry of Digestion
330(1)
8.6.2.2 Process and Parameters
331(3)
8.6.2.3 Landfill Gas
334(1)
8.6.3 Biodiesel
335(1)
8.6.3.1 Introduction
335(1)
8.6.3.2 Feedstocks
336(2)
8.6.3.3 Biochemistry of Fatty Acids
338(4)
8.6.3.4 Production and Catalysis
342(6)
8.6.3.5 Conclusions
348(1)
8.7 Summary
348(7)
Other Resources
349(1)
References
349(6)
Chapter 9 Nuclear Energy
355(28)
9.1 Introduction
355(1)
9.2 Nuclear Chemistry Basics
356(11)
9.2.1 General Chemistry Review
356(1)
9.2.2 Birth of Nuclear Energy
357(3)
9.2.3 Nuclear Reactors
360(1)
9.2.3.1 Conventional Nuclear Power
360(5)
9.2.3.2 Other Types of Nuclear Reactors
365(2)
9.3 Uranium Production
367(10)
9.3.1 Uranium Mining
367(1)
9.3.2 Uranium Enrichment
368(1)
9.3.3 Fuel Reprocessing and Waste Handling
369(1)
9.3.3.1 Depleted Uranium
370(1)
9.3.3.2 Reprocessing Technologies
371(6)
9.4 Future of Nuclear Energy
377(2)
9.4.1 Generation IV Reactors
377(1)
9.4.2 Fusion
377(2)
9.5 Summary
379(4)
Other Resources
379(1)
References
379(4)
Chapter 10 Closing Remarks
383(4)
References
385(2)
Appendix I SI Units and Prefixes 387(2)
Appendix II Unit Conversions 389(2)
Appendix III Electricity: Units and Equations 391(2)
Appendix IV Fossil Fuel Units and Abbreviations 393(2)
Appendix V Important Constants 395(2)
Appendix VI Acronyms 397(4)
Index 401
Professor Nancy E. Carpenter obtained her Ph.D. in organic chemistry from Northwestern University under the guidance of Professor Anthony G.M. Barrett. After a postdoctoral appointment with Professor Larry Overman at the University of California, Irvine, she came to the University of Minnesota, Morris, a four-year public liberal arts campus on the prairies of west-central Minnesota. Her research interests have spanned a diverse range of areas, from synthetic organometallic methodology to environmental remediation of chlorinated ethylenes and exploration of biodiesel from oilseeds and algae. She has been recognized with two teaching awards at the undergraduate level and was a co-recipient of the 2012 ACS-CEI Award for Incorporating Sustainability into Chemistry Education.