Atjaunināt sīkdatņu piekrišanu

E-grāmata: Children's Fractional Knowledge

  • Formāts: PDF+DRM
  • Izdošanas datums: 02-Dec-2009
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781441905918
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 02-Dec-2009
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781441905918

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Childrens Fractional Knowledge elegantly tracks the construction of knowledge, both by children learning new methods of reasoning and by the researchers studying their methods. The book challenges the widely held belief that childrens whole number knowledge is a distraction from their learning of fractions by positing that their fractional learning involves reorganizingnot simply using or building upontheir whole number knowledge. This hypothesis is explained in detail using examples of actual grade-schoolers approaching problems in fractions including the schemes they construct to relate parts to a whole, to produce a fraction as a multiple of a unit part, to transform a fraction into a commensurate fraction, or to combine two fractions multiplicatively or additively.



These case studies provide a singular journey into childrens mathematics experience, which often varies greatly from that of adults. Moreover, the authors descriptive terms reflect childrens quantitative operations, as opposed to adult mathematical phrases rooted in concepts that do not reflectand which in the classroom may even suppressyoungsters learning experiences.



Highlights of the coverage:





















Toward a formulation of a mathematics of living instead of being Operations that produce numerical counting schemes Case studies: childrens part-whole, partitive, iterative, and other fraction schemes Using the generalized number sequence to produce fraction schemes Redefining school mathematics























This fresh perspective is of immediate importance to researchers in mathematics education. With the up-close lens onto mathematical development found in Childrens Fractional Knowledge, readers can work toward creating more effective methods for improving young learners quantitative reasoning skills.
A New Hypothesis Concerning Childrens Fractional Knowledge.-
Perspectives on Childrens Fraction Knowledge.- Operations That Produce
Numerical Counting Schemes.- Articulation of the Reorganization Hypothesis.-
The Partitive and the Part-Whole Schemes.- The Unit Composition and the
Commensurate Schemes.- The Partitive, the Iterative, and the Unit Composition
Schemes.- Equipartitioning Operations for Connected Numbers: Their Use and
Interiorization.- The Construction of Fraction Schemes Using the Generalized
Number Sequence.- The Partitioning and Fraction Schemes.- Continuing Research
on Students Fraction Schemes.